Using Galilean transformation x^{\prime} as measured by an observer O^{\prime} moving at constant velocity relative to stationary (relative to Earth) observer O is:

$$
\begin{equation*}
x^{\prime}=x-v t \tag{1}
\end{equation*}
$$

According to the stationary observer $\mathrm{O}^{\prime}, \mathrm{X}^{\prime}$ appears contracted and, using the well known LorentzFitzgerald contraction, it is:

$$
x^{\prime} \sqrt{1-\frac{v^{2}}{c^{2}}}=x-v t[2]
$$

If we solve for x^{\prime} we get the Lorentz transformation form X^{\prime} to X and vice versa.

$$
\begin{aligned}
& x^{\prime}=\frac{x-v t}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& x=\frac{x^{\prime}+v t^{\prime}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{aligned}
$$

We can solve for t^{\prime} an/or t using equations [3] and [4] and obtain the Lorentz transformation for time (t and/or t')
$t^{\prime}=\frac{t-\frac{v x}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}[5]$
The inverse transformation for [5] is;
$t=\frac{t^{\prime}+v t^{\prime}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}[6]$
Since the relative motion is restricted to $x, y^{\prime}=y$ and $z^{\prime}=z$. This concludes the derivation for Lorentz transformation. There a variety of derivations based on the two postulates of special relativity that requires more algebraic work.

