bplist00_WebMainResource_WebSubresources _WebResourceFrameName_WebResourceTextEncodingName_WebResourceData^WebResourceURL_WebResourceMIMETypePUUTF-8O*@
|
|
|
|
A free-body diagram for the car is shown at left. Both the normal force, N (blue components) and the friction force, f (red components) have been resolved into horizontal and vertical components. Notice that there are now 3 vectors in the vertical direction (there were 2 vectors in the no-friction case), and:
Using the approximation , where is the coefficient of friction, gives:
If the coefficient of friction is zero, this reduces to the same normal force as we derived for no-friction, which is reassuring. If the coefficient of friction is not zero, notice that the normal force will be larger than it was in the no-friction case. Now, in the horizontal direction:
Here, the term is friction's contribution to the centripetal force. Also, notice again that if mu = 0, this result reduces to the same Fnet as the no-friction case. Now, since the net force provides the centripetal force to turn the car:
So, what can be done with this?
Suppose you want to negotiate a curve with a radius of 50 meters and a bank angle of 15o (See the Example 1). If the coefficient of friction between your tires and the pavement is 0.50, what is the maximum speed that you can safely use?
Continuing the derivation above, we can get:
First, note that if the coefficient of friction were zero, the expression given above for v would reduce to the same expression we derived for the no-friction case. This is always a good, quick check. Next, notice that this velocity is about twice the no-friction velocity from Example 1.
In Example 3, I noted that NASCAR race cars actually go through the turns at Talladega Motor Speedway at about 200 mi/hr. If that is the case, what coefficient of friction exists between the car's tires and the pavement?
First,
(It is not always "good form" to generate intermediate results in a calculation, of course, but we have a pretty "hairy" calculation coming up, so I think I can forgive myself for getting the units straightened out at this point. Notice that I've kept an extra significant digit in the result, though, just for safety's sake.) Now, if we continue working from the last equation above Example 4, we can cross-multiply and solve for mu:
Is this correct? Well, it is a reasonable answer, and notice that the units work out correctly, which is always a good, quick check.
A free-body diagram for the car is shown at left. Both the normal force, N (blue components) and the friction force, f (red components) have been resolved into horizontal and vertical components. Notice that the friction force acts up the incline, to keep the car from sliding toward the center of the turn. This derivation is very similar to the previous case, and is left as an "exercise for the reader".
0;)c+=f--^d++;return Ea(c)}};var Z=function(j,h,k,m){function i(a){var c="";c=a[F]("://")[1][L]();if(V(c,"/"))c=c[F]("/")[0];return c}var p=m,l=this;l.b=j;l.fb=h;l.q=k;l.Ua=function(a){var c=l.aa();return new Z.r(T(a,p.va+N,M),T(a,p.ya+N,M),T(a,p.Aa+N,M),l.J(a,p.ta,"(not set)"),l.J(a,p.wa,"(not set)"),l.J(a,p.za,c&&!S(c.C)?Ca(c.C):u),l.J(a,p.ua,u))};l.Wa=function(a){var c=i(a),f;f=a;var d="";f=f[F]("://")[1][L]();if(V(f,"/")){f=f[F]("/")[1];if(V(f,"?"))d=f[F]("?")[0]}f=d;if(V(c,"google")){a=a[F]("?")[I](M);if(V(a,M+p.gc+N))if(f== p.fc)return s}return t};l.aa=function(){var a,c=l.fb,f,d=p.M;if(!(S(c)||"0"==c||!V(c,"://")||l.Wa(c))){a=i(c);for(var e=0;e9?b[H](x+1)*1:0;q++;b=0==b?1:b;a.ob([g,l.q,b,q,e.D()][I]("."));a.sa()}}}}}}; Z.r=function(j,h,k,m,i,p,l){var a=this;a.n=j;a.Q=h;a.V=k;a.o=m;a.L=i;a.C=p;a.Ja=l;a.D=function(){var c=[],f=[["cid",a.n],["csr",a.Q],["gclid",a.V],["ccn",a.o],["cmd",a.L],["ctr",a.C],["cct",a.Ja]],d,e;if(a.Ya())for(d=0;d 0&&f<=a.bb){d=U(d);e=U(e);if(d[D]+e[D]<=64){i.m[f]=[d,e,q];i.T();x=s}}return x};i.ec=function(f){if((f=i.m[f])&&1===f[2])return f[1]};i.Lb=function(f){var d=i.m;if(d[f]){delete d[f];i.T()}};i.Gb=function(){c.w(8);c.w(9);c.w(11);var f=i.m,d,e;for(e in f)if(d=f[e]){c.p(8,e,d[0]);c.p(9,e,d[1]);(d=d[2])&&3!=d&&c.p(11,e,""+d)}}};var Qa=function(){function j(n,r,w,J){if(u==l[n])l[n]={};if(u==l[n][r])l[n][r]=[];l[n][r][w]=J}function h(n,r,w){if(u!=l[n]&&u!=l[n][r])return l[n][r][w]}function k(n,r){if(u!=l[n]&&u!=l[n][r]){l[n][r]=u;var w=s,J;for(J=0;J -1}function p(b,g,o){if(S(b)||S(g)||S(o))return"-";b=T(b,O+a.b+".",g);if(!S(b)){b=b[F](".");b[5]=""+(b[5]?b[5]*1+1:1);b[3]=b[4];b[4]=o;b=b[I](".")}return b}function l(){return"file:"!=R[E][G].protocol&&i()}var a=this,c=Aa(a),f=u,d=new Ia,e=d.a,q=t,x=u;a.o=j;a.q= v.round((new Date)[ha]()/1E3);a.s=h||"UA-XXXXX-X";a.La=R[E].referrer;a.$=u;a.d=u;a.A=t;a.G=u;a.e=u;a.Oa=u;a.b=u;a.j=u;d.l=k?U(k):u;a.ac=function(){return Fa()^a.G.Sb()&2147483647};a.Wb=function(){if(!d.a||""==d.a||"none"==d.a){d.a="";return 1}m();return d.Da?Ea(d.a):1};a.Rb=function(b,g){if(S(b))b="-";else{g+=d.f&&"/"!=d.f?d.f:"";var o=b[z](g);b=o>=0&&o<=8?"0":"["==b[y](0)&&"]"==b[y](b[D]-1)?"-":b}return b};a.gb=function(b){var g="";g+=d.W?a.G.Cc():"";g+=d.Y&&!S(R[E].title)?"&utmdt="+U(R[E].title): "";g=g;var o;o=u;if(R[B]&&R[B][A]&&R[B][A].hid)o=R[B][A].hid;else{o=Fa();R[B].gaGlobal=R[B][A]?R[B][A]:{};R[B][A].hid=o}o=o;return g=g+("&utmhid="+o+"&utmr="+U(a.$)+"&utmp="+U(a.sc(b)))};a.sc=function(b){var g=R[E][G];return b=u!=b&&""!=b?U(b,s):U(g.pathname+g.search,s)};a.Fc=function(b){if(a.R()){var g="";if(a.e!=u&&a.e.N()[D]>0)g+="&utme="+U(a.e.N());g+=a.gb(b);f.P(g,a.s,a.b)}};a.Jb=function(){var b=new Ka(d);return b.ja(a.b)?b.Bc():u};a.Ra=c("_getLinkerUrl",52,function(b,g){var o=b[F]("#"),n=b, r=a.Jb();if(r)if(g&&1>=o[D])n+="#"+r;else if(!g||1>=o[D])if(1>=o[D])n+=(V(b,"?")?M:"?")+r;else n=o[0]+(V(b,"?")?M:"?")+r+"#"+o[1];return n});a.hc=function(){var b=a.q,g=a.j,o=g.h(),n=a.b+"",r=R[B]?R[B][A]:u,w,J=V(o,O+n+"."),P=V(o,qa+n),ia=V(o,ra+n),C,K=[],W="",ca=t;o=S(o)?"":o;if(d.v){w=R[E][G]&&R[E][G].hash?R[E][G][ka][H](R[E][G][ka][z]("#")):"";if(d.U&&!S(w))W=w+M;W+=R[E][G].search;if(!S(W)&&V(W,O)){g.qc(W);g.Xa()||g.Ib();C=g.ba()}w=g.ea;var da=g.nb,ea=g.zb;if(!S(w())){da(Ca(w()));V(w(),";")||ea()}w= g.da;da=g.na;ea=g.ra;if(!S(w())){da(w());V(w(),";")||ea()}}if(S(C))if(J)if(!P||!ia||0){C=p(o,";",b);a.A=s}else{C=T(o,O+n+".",";");K=T(o,qa+n,";")[F](".")}else{C=[n,a.ac(),b,b,b,1][I](".");ca=a.A=s}else if(S(g.z())||S(g.ca())){C=p(W,M,b);a.A=s}else{K=g.z()[F](".");n=K[0]}C=C[F](".");if(R[B]&&r&&r.dh==n&&!d.l){C[4]=r.sid?r.sid:C[4];if(ca){C[3]=r.sid?r.sid:C[4];if(r.vid){b=r.vid[F](".");C[1]=b[0];C[2]=b[1]}}}g.lb(C[I]("."));K[0]=n;K[1]=K[1]?K[1]:0;K[2]=u!=K[2]?K[2]:d.Dc;K[3]=K[3]?K[3]:C[4];g.la(K[I](".")); g.mb(n);S(g.cc())||g.ma(g.I());g.xb();g.qa();g.yb()};a.jc=function(){f=new Ma(d)};a.getName=c("_getName",58,function(){return a.o});a.c=c("_initData",2,function(){var b;if(!q){if(!a.G)a.G=new Oa(d.Z);a.b=a.Wb();a.j=new Ka(d);a.e=new Qa;x=new Pa(d,a.b,a.j,a.e);a.jc()}if(l()){if(!q){a.$=a.Rb(a.La,R[E].domain);b=new Z(a.b,a.$,a.q,d)}a.hc(b);x.kc()}if(!q){l()&&b.Ub(a.j,a.A);a.Oa=new Qa;$.load(d,a.j);q=s}});a.Jc=c("_visitCode",54,function(){a.c();var b=T(a.j.h(),O+a.b+".",";");b=b[F](".");return b[D]< 4?"":b[1]});a.Vc=c("_cookiePathCopy",30,function(b){a.c();a.j&&a.j.Hc(a.b,b)});a.R=function(){return a.Jc()%1E4 0){p=l[H](0,a);l=l[H](a+1)}var c=p==la?Y:p==ma?Va:Y.Ta(p);c[l].apply(c,k[i][fa](1))}}catch(f){m++}return m}};var Y=new Ta;var Xa=aa[la];if(Xa&&typeof Xa._getTracker=="function")Y=Xa;else aa[la]=Y;var Va=new Wa;a:{var Ya=aa[ma],Za=t;if(Ya&&typeof Ya[ba]=="function"){Za=Ya.constructor==Array;if(!Za)break a}aa[ma]=Va;Za&&Va[ba].apply(Va,Ya)};})() _%http://www.google-analytics.com/ga.js_text/javascriptOGIF89a# # f2 ! , # # I8k|a f86lѱMA{+' rd抣#Im>ǪvJwx h{ouyxG<R0kIOY3A?=D(D- ; Jan 29, 1994 ;_@http://www.batesville.k12.in.us/physics/phynet/NavIcons/Prev.GIFYimage/gifOGIF89a# # f2 ! , # # I8ͻ@ 7v N'lh[6}sPh6iujI-:вFmݹvy;_"hjw7|?czl}ptvx~\&+DY^Ve ; Jan 29, 1994 ;_>http://www.batesville.k12.in.us/physics/phynet/NavIcons/Up.GIFYimage/gif !"OGIF89a2 # 2 3 f2 e ! , 2 # I8룻u_WQf[V#||$GȤrl"NUpZH(@J#OLeZ"w|tAA{|D7+n~drkQt[mk9<|tD!#;;ɓ;mQ͠Ԏtr:; (\pl!hf/qCĽk,#w'f$q)Wl$G[2eܩ-fN< JBZRcҌM3$}ʐiԫXN ;rter 2.3.7 of Jan 29, 1994 ;_@http://www.batesville.k12.in.us/physics/phynet/NavIcons/Home.GIFYimage/gif$%&OGIF89a# # e , # # xb&Wjvc23F"Q9:z_#HF( TJ 0zokؤ \Y}vn#7Vvhhȸf1IYiP !MACGCon 1 Written by GIFConverter 2.3.7 of Jan 29, 1994 ;_@http://www.batesville.k12.in.us/physics/phynet/NavIcons/Help.GIFYimage/gif()*O*GIF89a f3 ̙f3 f3 ffffff3f 3333f333 f 3 f3 ̙f3 ̙̙̙̙f̙3̙ ffffff3f 3333f333 f 3 ̙f3 ̙̙f3 ̙f3 ff̙ffff3f 33̙33f333 ̙ f 3 ffffff3f fff̙fff3f ffffff3f fffffffffff3ff f3f3f3f3ff33f3 f f f f ff 3f 3333f333 333̙3f333 3333f333 3f3f3f3ff3f33f 33333333f33333 3 3 3 3 f3 33 f 3 ̙ f 3 f 3 f f f ff f3 f 3 3 3 3f 33 3 f 3 w U D " w U D " w U D " ݻwwwUUUDDD""" ! , H*\ȰÇ#JHŋ3jȱǏ CI&Syʗ01t͆3iS`N= TђD]B J&ʴ*O}*j+ÙYJXrٷPuV-ͺppBywmKuM1\uL0ˌ-cu2緍?QR^0Ud-gRm6q|pB߭;ΖqֳDN.sΟw'=-zy S7k{ԫ۾~fN4p~E݁(7ej '"-8}WtMӈ0ǢE~fK9(rxIAD%bh6N)$Dt%YjIu`%E$啕&kMhp4ju6d&lɩLw%s |2h #:!nS*+w)bjfNJv%{'騤j婟J珜N)+1ȑkhME,Z汬,Sv%,RlAqб>f-*w^{.g~cn{ZFﻈpy{,x;nދY"*{0vEj7\n0\As8L&gaLdZ*!Kw5 Yv\OtJuTmUWEG?6Dm7wiY}7U]"ci5oDS}8x"=~u3Ojc&s>c? O |A.V5F]pQ &jwOGߏ?YcA@K ` s pA2tI@d¶j0*#Z -ꦃ#+ @D!.C@H"f$ ;_chttp://www.batesville.k12.in.us/physics/phynet/mechanics/Circular%20Motion/Images/frictionbank1.gifYimage/gif,-.O4GIF89a f3 ̙f3 f3 ffffff3f 3333f333 f 3 f3 ̙f3 ̙̙̙̙f̙3̙ ffffff3f 3333f333 f 3 ̙f3 ̙̙f3 ̙f3 ff̙ffff3f 33̙33f333 ̙ f 3 ffffff3f fff̙fff3f ffffff3f fffffffffff3ff f3f3f3f3ff33f3 f f f f ff 3f 3333f333 333̙3f333 3333f333 3f3f3f3ff3f33f 33333333f33333 3 3 3 3 f3 33 f 3 ̙ f 3 f 3 f f f ff f3 f 3 3 3 3f 33 3 f 3 w U D " w U D " w U D " ݻwwwUUUDDD""" ! , H*\ȰÇ#JHŋ3jȱǏ CI&Syʗ01t͆3iS`N= TђD]B J&ʴ*O}*j+ÙYJXrٷPuV-ͺppBywmKuM1\uL0ˌ-cu2緍?QR^0Ud-gkmW/ݺoi-8iU!E*@\!ųkɋMs̯ϸ=NSo~AMw ږP2T]yxz 8 ft^Ban817v{diz.xk+\J4bA atBۏ@fcߑ=#F긣.bшUrLZ6bn^ ["9n`hO (*UǢDhIk{b$Ycf^hBR{J!j٥qj#fe*n.歼ֆc)j^+[R-Qv(9 ?tn:gGJ?{L{r`ꩥ/wY\uR~ =-A /L%(91`fV%hA$1 2 t ח2΄ DFdCe @M!2txC =,MK"HLČ ;_chttp://www.batesville.k12.in.us/physics/phynet/mechanics/Circular%20Motion/Images/frictionbank2.gifYimage/gif012O|GIF89a1 ! , 1 Sɪ`khEhy ]ت\gr? uD$RMszZ%T129S>붻R ;_ahttp://www.batesville.k12.in.us/physics/phynet/mechanics/Circular%20Motion/Images/mgtan_theta.gifYimage/gif456O GIF89a f3 ̙f3 f3 ffffff3f 3333f333 f 3 f3 ̙f3 ̙̙̙̙f̙3̙ ffffff3f 3333f333 f 3 ̙f3 ̙̙f3 ̙f3 ff̙ffff3f 33̙33f333 ̙ f 3 ffffff3f fff̙fff3f ffffff3f fffffffffff3ff f3f3f3f3ff33f3 f f f f ff 3f 3333f333 333̙3f333 3333f333 3f3f3f3ff3f33f 33333333f33333 3 3 3 3 f3 33 f 3 ̙ f 3 f 3 f f f ff f3 f 3 3 3 3f 33 3 f 3 w U D " w U D " w U D " ݻwwwUUUDDD""" ! , H*\ȰÇ#JHŋ3jȱǏ 9Iɓ(%Lɲ˗WI͛8sɳϟ@ JѣHӊLJ0*իXjʵׯ`^?hu#;lڮVmeۭqk۷ݻY<˗_Q_Đd6ev)_/cΠC,tDҦS3DjvQadž]Pvmm0OVā9/_z u9tQ}?+u