VECTORS                                     Name:_______________________________       

Partners:____________________________________   Course:________________

 Visit the following site and get an understanding of vectors and scalars.

 Purpose: To determine
(a) the resultant and equilibrant of two or more vectors                
(b) the components of a vector 
analytically and to verify the results using a force table and a PC.

Apparatus: force table with pulleys, mass hangers, mass set, string, level, and PC.

Theory: a) analytical method

Let's say two forces F1 (making an angle θ1 with the x-axis) and F 2 (making an angle θ2 with the x-axis) are acting on an object. To find the resultant force we will do the following:     

Force

X-component

Y-component

F1

F1 Cos θ1

F1 Sin θ1

F2

F2 Cos θ2

F2 Sin θ2

F1 + F2

Fx = F1 Cos θ1+ F2 Cosθ2

Fy = F1 Sin θ1 + F2 Sin θ2

Magnitude of the resultant (FR) is given by;    FR 2  =  Fx + Fy 2

Direction of the resultant, θR, measured from the X - axis depends on the signs of Fx and Fy

When  Fx > 0 and  Fy >0; θR = tan-1(Fy/Fx).

When the components are negative go the appropriate quadrants and determine θR.


The equilibrant is given by:

magnitude = magnitude of the resultant.

direction = θE = 180 + θR.

Procedure

A) Use of a PC:

1. Click "Short cut to Phys". 

2. Type 1(one) and Enter.

3. Type P and put in the magnitude of the first vector and Enter.

4. Put in the angle of the first vector and Enter.

5. Type P and put in the magnitude of the second vector and Enter.

6. Put in the angle of the second vector and Enter.

7. Push Esc for vector data list or continue with third and fourth vectors.

8. Obtain FR (=R) and θR (=A) for the first 4 cases and Fx and Fy for the last case. 

9. Type "system" and enter and then type "exit" to get to windows. 

 

B) Analytical Method 

Use the analytical method and find the magnitude and the direction of the resultant. Estimate the direction of the equilibrant.

 

C) Force Table Check

Addition of two vectors:

1) Use a level to make sure the force table is leveled.

2) Mount a pulley on the 0 degree mark and suspend a 50 gram mass hanger. Mount a second pulley on the 90 degree mark and suspend a 100 gram mass (hanger and a 50 gram mass).

3) Set up the equilibrant on the force table and test the system for equilibrium.

4) Remove all the masses from the force table.

5) Mount a pulley on the 20 degree mark and suspend a 50 gram mass. Mount a second pulley on the 120 degree mark and suspend a 250 gram mass.

6) Set up the equilibrant on the force table and test the system for equilibrium. 

7) Remove the equilibrant mass.  

Addition of three vectors:

1) Mount a pulley on the 300 degree mark and suspend a 300 gram mass (masses 50 gram and 250 gram are already there).

2) Set up the equilibrant on the force table and test the system for equilibrium.

3) Remove all the masses from the force table.

Addition of four vectors:

1) Mount a pulley on the 30 degree mark and suspend a 100 gram mass. Mount a second pulley on the 140 degree mark and suspend a 150 gram mass. Mount a third pulley on the 200 degree mark and suspend a 125 gram mass. Mount a fourth pulley on the 300 degree mark and suspend a 200 gram mass.

2) Set up the equilibrant on the force table and test the system for equilibrium.

3) Remove all the masses from the force table.

Vector resolution:

1) Mount a pulley on the 30 degree mark and suspend a 300 gram mass over it.

2) Find the magnitudes of the components along the 0 degree (X- axis) and 90 degree (Y-axis) directions. 

3) Set up the above components as they have been determined. Move the 300 gram mass to, 30 + 180 = 210 degrees, which is the direction of the equilibrant. Test the system for equilibrium.


DATA 

Addition

Resultant Vector

Force Table Check

 

From computer

Analytical method

 

50 g @ 00

and

100 g @ 900

FR=R=

θR =A=

 

FR=

θR=

θE=

________

50 g @ 200

and

250 g @ 1200

FR=R=

θR =A=

 

FR=

θR =

θE=

________

50 g @ 200

250 g @ 1200

300 g @ 3000

FR=R=

θR =A=

 

FR=

θR =

θE =

________

100 g @ 300

150 g @ 1400

125 g @ 2000

200 g @ 3000

FR=R=

θR =A=

 

FR=

θR =

θE =

_________

Resolution

XXXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXXX

300 g @ 300

Fx=

Fy=

Fx=

Fy=

_________

 


Exercise: Use the graphical method to find the magnitude (FR) & direction (θR) of the resultant for the case of addition of four vectors. Here you need to draw a vector diagram, using a protractor and ruler, following the tail-to-tip method, to scale. Show the direction of the vectors and identify FR & θR in the drawing.                     

            FR = ____________                θR = _________________

............................................................................................................................................00................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
............................................................................................................................................................................................................................................................................................00................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
............................................................................................................................................................................................................................................................................................00................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
............................................................................................................................................................................................................................................................................................00................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
............................................................................................................................................................................................................................................................................................00................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
............................................................................................................................................................................................................................................................................................00................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
............................................................................................................................................................................................................................................................................................00................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
............................................................................................................................................................................................................................................................................................00................................................................................................................................................
................................................................................................................................................