CHEM106 PS-6 Due at the beginning of class

- 1. The activation energies for uncatalyzed and catalyzed reactions at a temperature of 298 K were found to be 95 kJ/mole and 75 kJ/mole respectively.
 - a. For uncatalyzed reaction, calculate the fraction of collisions with sufficient kinetic energies to react.
 - b. For the catalyzed reaction, calculation the fraction of collisions with sufficient kinetic energies to react.
 - c. Calculate how many times faster the catalyzed reaction occurs.
- 2. Use the experimental data below to find the rate law & rate constant for the reaction

 $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$

Experiment Number	Rate (M/s)	[NO ₂]	[CO]
1	0.011	0.15	0.15
2	0.045	0.30	0.15
3	0.180	0.60	0.30
4	0.180	0.60	0.60

- 3. For a chemical reaction having an activation energy of 35 kJ/mole, clearly calculate (showing all formulas and a logical process) how many times faster this reaction would occur at body temperature compared to room temperature (298K).
- 4. Values of the rate constant for the decomposition of N_2O_5 are 2.14 x 10⁵ at 658 K and 7.03 x 10⁵ at 703 K. Determine the activation energy for this decomposition reaction.