CHEM105 Test 3

Please show all equations, all substitutions, and all work to receive any credit

1. Use these experimental data to find the rate law and rate constant for the reaction $A + B \rightarrow C$

Experiment #	[A]	[B]	Initial Rate (M/sec)
1	0.020	0.100	1.0 x 10 ⁻⁵
2	0.020	0.200	1.0 x 10 ⁻⁵
3	0.060	0.100	9.0 x 10 ⁻⁵

2. The rate constant k for a different reaction was found to be $2.0 \times 10^{-5} \text{ M}^{-1}/\text{sec}$ at a temperature of 298 K and $4.0 \times 10^{-5} \text{ M}^{-1}/\text{sec}$ at a temperature of 308 K. Calculate the activation energy for this reaction.

3. At a temperature of 298 K, by what factor would the reaction rate increase if the reaction's activation energy were lowered from 20 kJ/mole to 15 kJ/mole? Clearly explain why and use well-labeled diagrams to show how this increase would occur.

4. Compare the relative acidities of Cl₃CCOOH and H₃CCOOH by drawing the structure for each and by clearly showing and discussing the underlying reasons for this difference.

5. A mixture contained 0.15 M of acetic acid (CH₃COOH) and 0.10 M of the acetate ion (CH₃COO⁻). The Ka for acetic acid is 1.8 x 10⁻⁵. Determine the pH, pOH, [H₃O⁺], and [OH⁻] for the solution that is at a temperature of 298K.

- 6. At a temperature of 298 K, K_w is 1.0 x 10⁻¹⁴ for the water auto-ionization reaction: $2 H_2O(l) \leftrightarrow H_3O^+(aq) + OH^-(aq)$ *The change in enthalpy for this reaction is* +56.48 kJ/mol.
 - a. Calculate the value of the equilibrium constant, K_w, at a body temperature of 310 K.

b. Predict whether the equilibrium constant, K_w , would be expected to increase or decrease with an increase in temperature from 298 K to 310 K. Fully support your answer.

c. For a little extra credit, calculate the neutral pH for this 310 K body temperature.

- 7. Identify oxidation numbers for each element in the following substances:
 - a. MnO₂
 - b. CrO₄²⁻
 - c. CO
 - d. HNO₂
- 8. Co²⁺ has a standard reduction potential of -0.28 V; Ag+ has a standard reduction potential of +0.80 V. A galvanic cell was constructed to produce electricity using a Co solid electrode in a CoCl₂ (aq) solution in one container and an Ag solid electrode in an AgNO₃ (aq) solution; the two containers were connected using a salt bridge. A voltmeter was connected to the two electrodes.
 - a. Calculate the E^o_{cell}.
 - b. Write the equation for the reduction reaction.
 - c. Write the equation for the oxidation reaction.
 - d. Write the equation for the overall reaction and the expression for Q for this reaction.
 - e. Calculate the standard change in Gibbs Free Energy, ΔG° , for this reaction.
 - f. Calculate the equilibrium constant for this reaction at a temperature of 298 K.
- 9. The bicarbonate ion (HCO₃⁻) is an abundant ion found in ground water and has a K_a of 5.6 x 10⁻¹¹.
 - a. Write the chemical equation for bicarbonate reacting as a base with water.
 - b. Write the chemical equation for bicarbonate reacting as an acid with water.
 - c. Determine K_b for the carbonate ion (CO₃²⁻) reacting as a base with water.