CHEMSTRY Gilbert an atoms-focused approach Foster

Chapter 10 Properties of Gases The Air We Breathe

10.1 The Properties of Gases

- 10.2 Effusion and the Kinetic Molecular Theory of Gases
- 10.3 Atmospheric Pressure
- 10.4 The Gas Laws
- 10.5 The Combined Gas Law
- 10.6 Ideal Gases and the Ideal Gas Law
- 10.7 Densities of Gases
- **10.8 Gases in Chemical Reactions**
- 10.9 Mixtures of Gases
- 10.10 Solubility of Gases and Henry's Law
- 10.11 Gas Diffusion: Molecules Moving Rapidly
- 10.12 Real Gases

Properties of a Gas

- Neither definite shape nor definite volume
 - Uniformly fills any container
 - Exerts pressure on surroundings
 - Volume changes with temperature and pressure
- Mixes completely with other gases
- Much less dense than solids, liquids

Parameters Affecting Gases

- Pressure (P)
- Volume (V)
- Temperature (T)
- Number of Moles (n)

- 10.1 The Properties of Gases
- **10.2 Effusion and the Kinetic Molecular Theory of Gases**
- 10.3 Atmospheric Pressure
- 10.4 The Gas Laws
- 10.5 The Combined Gas Law
- 10.6 Ideal Gases and the Ideal Gas Law
- 10.7 Densities of Gases
- **10.8 Gases in Chemical Reactions**
- 10.9 Mixtures of Gases
- 10.10 Solubility of Gases and Henry's Law
- 10.11 Gas Diffusion: Molecules Moving Rapidly
- 10.12 Real Gases

Assumes that gas molecules:

- 1. Have tiny volumes compared with their container's volume
- 2. Don't interact with other gas molecules
- 3. Move randomly and constantly
- 4. Engage in elastic collisions with walls of container and other gas molecules
- 5. Have average kinetic energy that is proportional to absolute temperature

Kinetic Molecular Theory (cont.)

- Average Kinetic Energy: KE_{avg} = ½ mu²_{rms}
 - $u_{\rm rms}$ = the root-mean-squared speed of the molecules;

m = molecular mass.

• Relative Rates of Effusion:

$$\frac{(\text{Rate})_{\text{gas 1}}}{(\text{Rate})_{\text{gas 2}}} = \sqrt{\frac{M_2}{M_1}}$$

where M is the molar mass

© 2014 W. W. Norton Co., Inc.

- 10.1 The Properties of Gases
- 10.2 Effusion and the Kinetic Molecular Theory of Gases
- **10.3 Atmospheric Pressure**
- 10.4 The Gas Laws
- 10.5 The Combined Gas Law
- 10.6 Ideal Gases and the Ideal Gas Law
- 10.7 Densities of Gases
- **10.8 Gases in Chemical Reactions**
- 10.9 Mixtures of Gases
- 10.10 Solubility of Gases and Henry's Law
- 10.11 Gas Diffusion: Molecules Moving Rapidly
- 10.12 Real Gases

» Pres

© 2014 W. W. Norton Co., Inc.

The Gas Phase

- The Atmosphere:
 - Layer of gases
 50 km thick
 - Composition is fairly consistent
 - Properties vary with location
 - » Pressure, density

TABLE 10.1	Composition
	of Dry Air ^a

Compound	% (by volume)
Nitrogen	78.08
Oxygen	20.95
Argon	0.934
Carbon dioxide	0.0395*
Neon	0.0018
Helium	0.00052
Methane	0.00018
Krypton	0.00011
^{<i>a</i>} Includes major and minc	or gases (with

^{*a*}Includes major and minor gases (with concentrations >1 ppm by volume). ^{*b*}Value as of January 2013. Atmospheric CO₂ is increasing by about 2 ppm each year.

Pressure

Pressure:

- Force/unit area (P = F/A)
- Atmospheric pressure = pressure exerted due to gravity acting on air above Earth's surface
- Units of Pressure:
 - SI units: newton/meter² = 1 pascal (Pa)
 - 1 standard atmosphere (1 atm) = 101,325 Pa
 - 1 atm = 760 mmHg = 760 torr

Measurement of Pressure

Barometer: measures atmospheric pressure

Height of Hg column based on balance of forces:

- gravity (pulls Hg down).
- atmospheric pressure (pushes Hg up into evacuated tube)

Elevation and Atmospheric Pressure

© 2014 W. W. Norton Co., Inc.

Relationship between Pressure Units

TABLE 10.2 Units for Expressing Pressure

Unit	Value
Standard atmosphere (atm)	1 atm
Pascal (Pa)	$1 \text{ atm} = 1.01325 \times 10^5 \text{ Pa}$
Kilopascal (kPa)	1 atm = 101.325 kPa
Millimeter of mercury (mmHg)	1 atm = 760 mmHg
Torr	1 atm = 760 torr
Bar	1 atm = 1.01325 bar
Millibar (mbar or mb)	1 atm = 1013.25 mbar
Pounds per square inch (psi)	1 atm = 14.7 psi
Inches of mercury	1 atm = 29.92 inches of Hg

Measuring Pressure: Manometer

Evacuated Closed end tube Valve 2 Valve 2 closed i open 🛏 $\Delta h = 0$ Evacuated flask Valve 1 open H Valve 1 closed 1 Mercury Gas (b) $P_{\text{gas}} = \Delta b$ (a) $\Delta b = 0$ P_{utm} P_{atm} Open end $\Delta b = 0$ Δb HE (c) $P_{gas} = P_{atm}$ (d) $P_{gas} < P_{atm}$ (c) $P_{gas} > P_{atm}$

Open systems:

Δ*h* is negative if $P_{gas} < P_{atm}$ (d)
 Δ*h* is positive if $P_{gas} > P_{atm}$ (e)

- 10.1 The Properties of Gases
- 10.2 Effusion and the Kinetic Molecular Theory of Gases
- 10.3 Atmospheric Pressure
- **10.4 The Gas Laws**
- 10.5 The Combined Gas Law
- 10.6 Ideal Gases and the Ideal Gas Law
- 10.7 Densities of Gases
- **10.8 Gases in Chemical Reactions**
- 10.9 Mixtures of Gases
- 10.10 Solubility of Gases and Henry's Law
- 10.11 Gas Diffusion: Molecules Moving Rapidly
- 10.12 Real Gases

Boyle's Law

- Gases are compressible
 - Pressure \uparrow as Volume \downarrow

Boyle's Law:

- $P \propto 1/V$ (T and n fixed)
- or, $P \times V = \text{constant}$
- or, $P_1V_1 = P_2V_2$
- Decreasing volume increases number of collisions/area; P↑ (KMT Postulates #3 & 4)

A balloon is filled with carbon dioxide to a pressure of 1.85 atm and has a volume of 1.54 L. If temperature remains constant, what is the final volume when the pressure is increased to 2.50 atm?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

© 2014 W. W. Norton Co., Inc.

Charles's Law

Charles's Law:

• $V \propto T$ (*P*, *n* constant) or, $\frac{V_1}{T_1} = \frac{V_2}{T_2}$

Volume of a gas extrapolates to zero at absolute zero (0 K = -273° C).

Kinetic energy \uparrow as T \uparrow ; force of collisions increases and gas expands to maintain constant *P* (KMT Post. #3, 4 & 5).

Avogadro's Law

- Volume is directly proportional to the number of moles of gas, $V \propto n$ (*T*, *P* constant)

or,
$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$

or, $\frac{V_1}{n_1} = \frac{V_2}{n_2}$

Increasing *n* increases the number of collisions, gas expands to keep pressure constant (KMT Post. #3 & 4).

Amonton's Law

•
$$P \propto T (n, V \text{ constant})$$

 $\frac{P}{T} = \text{constant}$
 $\frac{P}{T} = \text{constant}$
Increasing *T* will increase force of collisions if volume is kept constant; *P* will increase (KMT Post. #3, 4 & 5).

- 10.1 The Properties of Gases
- 10.2 Effusion and the Kinetic Molecular Theory of Gases
- 10.3 Atmospheric Pressure
- 10.4 The Gas Laws

10.5 The Combined Gas Law

- 10.6 Ideal Gases and the Ideal Gas Law
- 10.7 Densities of Gases
- **10.8 Gases in Chemical Reactions**
- 10.9 Mixtures of Gases
- 10.10 Solubility of Gases and Henry's Law
- 10.11 Gas Diffusion: Molecules Moving Rapidly
- 10.12 Real Gases

Combined Gas Law

- Boyle's Law: P × V = constant
- Charles's Law: V/T = constant
- Avogadro's Law: V/n = constant
- Combining the gas laws: $\frac{P \cdot V}{n \cdot T} = \text{constant}$
- If n is constant, then PV/T = constant, and

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Practice: Combined Gas Law

A sample of oxygen gas is at 0.500 atm and occupies a volume of 10.0 L at 0°C. What is the pressure of the gas if it is at 15.0 L at 25°C?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

- 10.1 The Properties of Gases
- 10.2 Effusion and the Kinetic Molecular Theory of Gases
- 10.3 Atmospheric Pressure
- 10.4 The Gas Laws
- 10.5 The Combined Gas Law
- **10.6 Ideal Gases and the Ideal Gas Law**
- 10.7 Densities of Gases
- **10.8 Gases in Chemical Reactions**
- 10.9 Mixtures of Gases
- 10.10 Solubility of Gases and Henry's Law
- 10.11 Gas Diffusion: Molecules Moving Rapidly
- 10.12 Real Gases

Ideal Gas Law

Combined Gas Law: $\frac{P \cdot V}{n \cdot T} = \text{constant} = R$

This rearranges to: PV = nRT

- R = universal gas constant = 0.08206 L·atm K⁻¹ mol⁻¹
- *P* = pressure (in atm)
- *V* = volume (in liters)
- n = moles
- T = temperature (in kelvin)

Universal Gas Constant

Value of universal gas constant depends on the units

• Using SI units of V and P, $R = 0.08206 \frac{L \cdot atm}{mol \cdot K}$

• Using 1 atm = 101.325 kPa to convert to atm $R = 0.08206 \frac{L \cdot atm}{mol \cdot K}$

Practice: Ideal Gas Law

Calculate the moles of gas contained in a 4.0 L container at STP.

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Practice: Ideal Gas Law

Calculate the pressure of 4.0 mol of methane gas in a 12.3 L container at 25°C.

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Practice: Ideal Gas Law

An experiment shows that a 0.281 g sample of an unknown gas occupies 127 mL at 98°C and 754 torr pressure. Calculate the molar mass of the gas. (Hint: $\mathcal{M} = g/n$)

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Reference Points for Gases

- Standard Temperature and Pressure (STP):
 - P = 1 atmosphere; $T = 0^{\circ}C$ (273 K)
- Molar Volume:
 - For 1 mol of an ideal gas at STP (calculated from the ideal gas law):

V = 22.4 L

- 10.1 The Properties of Gases
- 10.2 Effusion and the Kinetic Molecular Theory of Gases
- 10.3 Atmospheric Pressure
- 10.4 The Gas Laws
- 10.5 The Combined Gas Law
- 10.6 Ideal Gases and the Ideal Gas Law
- **10.7 Densities of Gases**
- **10.8 Gases in Chemical Reactions**
- 10.9 Mixtures of Gases
- 10.10 Solubility of Gases and Henry's Law
- 10.11 Gas Diffusion: Molecules Moving Rapidly
- 10.12 Real Gases

Densities of Gases

- Can be calculated from molar mass (M) and molar volume (V/n).
- From Ideal Gas Law:

•
$$PV = nRT \rightarrow d = \frac{m}{V} = \frac{P\mathcal{M}}{RT}$$

• Density: $d = \frac{m}{V} = \frac{P\mathcal{M}}{RT}$

• When P in atm, T in kelvin, d = g/L

Buoyancy: Densities of Gases

Buoyancy depends on differences in gas densities.

Depends on:

- 1. Molar Masses He(g) = 0.169 g/L* $N_2(g)$ = 1.19 g/L*
- Temperature
 Charles's Law: density ↓ as Temp.↑
- * At 15°C and 1 atm

Practice: Densities of Gases

When $HNO_3(aq)$ and $NaHCO_3(aq)$ are mixed together, a reaction takes place in which a gas is one of the products. The gas has a d = 1.83g/L at 1.00 atm and 23°C. What is the molar mass and identity of the gas?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

- 10.1 The Properties of Gases
- 10.2 Effusion and the Kinetic Molecular Theory of Gases
- 10.3 Atmospheric Pressure
- 10.4 The Gas Laws
- 10.5 The Combined Gas Law
- 10.6 Ideal Gases and the Ideal Gas Law
- 10.7 Densities of Gases
- **10.8 Gases in Chemical Reactions**
- 10.9 Mixtures of Gases
- 10.10 Solubility of Gases and Henry's Law
- 10.11 Gas Diffusion: Molecules Moving Rapidly
- 10.12 Real Gases

Stoichiometric Calculations Using Gases

- Stoichiometric Calculations:
 - Depend on mole/mole ratios of reactants and/or products
 - Moles of gas can be calculated from ideal gas law if P, V, and T are known

$$n = \frac{PV}{RT}$$

Practice: Gas Stoichiometry

Automobile air bags inflate during a crash or sudden stop by the rapid generation of $N_2(g)$ from sodium azide:

 $2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$

How many grams of sodium azide are needed to produce sufficient $N_2(g)$ to fill a 48 × 48 × 25 cm bag to a pressure of 1.20 atm at 15°C?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

- 10.1 The Properties of Gases
- 10.2 Effusion and the Kinetic Molecular Theory of Gases
- 10.3 Atmospheric Pressure
- 10.4 The Gas Laws
- 10.5 The Combined Gas Law
- 10.6 Ideal Gases and the Ideal Gas Law
- 10.7 Densities of Gases
- **10.8 Gases in Chemical Reactions**
- **10.9 Mixtures of Gases**
- 10.10 Solubility of Gases and Henry's Law
- 10.11 Gas Diffusion: Molecules Moving Rapidly
- 10.12 Real Gases

Dalton's Law of Partial Pressures

For a mixture of gases in a container:

Total pressure depends only on total number moles of gas, not on their identities (KMT Post. #2).

Mole Fraction & Partial Pressure

- Mole Fraction:
 - Ratio of the # of moles of a given component in a mixture to the total # of moles in a mixture:

$$x_1 = \frac{n_1}{n_{\text{total}}} = \frac{n_1}{n_1 + n_2 + n_3 + \dots}$$

- Mole Fraction in Terms of Pressure:
 - When V and T are constant, $P \propto n$

Mole Fraction & Partial Pressure (cont'd)

Since $P \propto n$

$$x_1 = \frac{P_1}{P_{\text{total}}}$$

And:

$$x_1 = \frac{P_1}{P_{\text{total}}}$$

Then...

$$=rac{P_1}{P_{ ext{total}}}$$

 X_1

Practice: Mole Fraction

At 25°C, a 1.0 L flask contains 0.030 mol of oxygen, 150.0 mg of nitrogen, and 2.6 × 10²¹ molecules of carbon dioxide. Calculate the partial pressure and mole fraction of each gas.

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Collecting a Gas over Water

$$2\text{KCIO}_3(s) \rightarrow 2\text{KCI}(s) + 3\text{O}_2(g)$$

Gases collected: $O_2(g)$ and $H_2O(g)$

$$P_{\text{total}} = P_{\text{O}_2} + P_{\text{H}_2\text{O}}$$

A sample of $KCIO_3$ is heated and decomposes to produce O_2 gas. The gas is collected by water displacement at 25°C. The total volume of the collected gas is 329 mL at a pressure of 744 torr. How many moles of oxygen are formed?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

- 10.1 The Properties of Gases
- 10.2 Effusion and the Kinetic Molecular Theory of Gases
- 10.3 Atmospheric Pressure
- 10.4 The Gas Laws
- 10.5 The Combined Gas Law
- 10.6 Ideal Gases and the Ideal Gas Law
- 10.7 Densities of Gases
- **10.8 Gases in Chemical Reactions**
- 10.9 Mixtures of Gases
- **10.10 Solubility of Gases and Henry's Law**
- 10.11 Gas Diffusion: Molecules Moving Rapidly
- 10.12 Real Gases

Solubility of Gases

 Solubility of gases depends on T and P

Solubility ↑ as Pressure ↑

Solubility ↓ as Temperature ↑

© 2014 W. W. Norton Co., Inc.

Henry's Law

Henry's Law:

• The higher the partial pressure of the gas above a liquid, the more soluble

•
$$C_{gas} \propto P_{gas}$$

•
$$C_{gas} = k_{\rm H} P_{\rm gas}$$

Chapter Outline

- 10.1 The Properties of Gases
- 10.2 Effusion and the Kinetic Molecular Theory of Gases
- 10.3 Atmospheric Pressure
- 10.4 The Gas Laws
- 10.5 The Combined Gas Law
- 10.6 Ideal Gases and the Ideal Gas Law
- 10.7 Densities of Gases
- **10.8 Gases in Chemical Reactions**
- 10.9 Mixtures of Gases
- 10.10 Solubility of Gases and Henry's Law

10.11 Gas Diffusion: Molecules Moving Rapidly

10.12 Real Gases

Diffusion and Effusion

- Graham's Law:
 - Rate of Effusion and Diffusion $\infty_{r_{int}}^{\text{PLMA}}$

Relative Rates of Effusion:

• Diffusion (Distance): $\frac{(Di}{(Di)}$

n:
$$\frac{(\text{Distance})_{\text{gas 1}}}{(\text{Distance})_{\text{gas 2}}} = \sqrt{\frac{M_1}{M_2}}$$

 $\frac{(\text{Distance})_{\text{gas 1}}}{(\text{Distance})_{\text{gas 1}}} = \sqrt{\frac{M_1}{M_2}}$

 (\mathbf{p})

Practice: Graham's Law

List the following gases, which are at the same temperature, in the order of increasing rates of diffusion: He, Kr, NO, O_2

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Practice: Graham's Law

Calculate the molar mass of a gas if equal volumes of oxygen gas and the unknown gas take 3.25 and 4.60 min, respectively, to effuse through a small hole at constant pressure and temperature.

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

- 10.1 The Properties of Gases
- 10.2 Effusion and the Kinetic Molecular Theory of Gases
- 10.3 Atmospheric Pressure
- 10.4 The Gas Laws
- 10.5 The Combined Gas Law
- 10.6 Ideal Gases and the Ideal Gas Law
- 10.7 Densities of Gases
- **10.8 Gases in Chemical Reactions**
- 10.9 Mixtures of Gases
- 10.10 Solubility of Gases and Henry's Law
- 10.11 Gas Diffusion: Molecules Moving Rapidly

10.12 Real Gases

Ideal gas behavior must be corrected when at high pressure (smaller volume) and low temperature (attractive forces become important).

Ideal vs. Real Gases

Assumptions of Kinetic Molecular Theory:

- #1: V_{gas} is negligible compared to $V_{container}$.
- #5: Gas molecules act independently (i.e., don't interact with each other).
- Valid at STP, but not at higher pressures:
 - Volume occupied by gas molecules is not negligible.
 - Attractive forces between gas molecules are significant.

Deviations from Ideal Behavior

Real Gases

- Corrections to Ideal Gas Law:
 - van der Waals Equation

$$\left(P + \frac{n^2 a}{V^2}\right) \left(V - nb\right) = n R T$$

corrected pressure corrected volume

ChemTours: Chapter 10

<u>Click here to launch t</u> <u>he ChemTours website</u> This concludes the Lecture PowerPoint presentation for Chapter 10

CHEMISTRY an atoms-focused approach

> GILBERT KIRSS FOSTER

© 2014 W. W. Norton Co., Inc.