CHEMISTRY an atoms-focused approach
 Gilbert Kirss
 Foster

Chapter 10

Properties of Gases The Air We Breathe

Chapter Outline

10.1 The Properties of Gases
10.2 Effusion and the Kinetic Molecular Theory of Gases
10.3 Atmospheric Pressure
10.4 The Gas Laws
10.5 The Combined Gas Law
10.6 Ideal Gases and the Ideal Gas Law 10.7 Densities of Gases
10.8 Gases in Chemical Reactions 10.9 Mixtures of Gases

10.10 Solubility of Gases and Henry's Law
10.11 Gas Diffusion: Molecules Moving Rapidly 10.12 Real Gases

Properties of a Gas

" Neither definite shape nor definite volume

- Uniformly fills any container
- Exerts pressure on surroundings
- Volume changes with temperature and pressure
" Mixes completely with other gases
" Much less dense than solids, liquids

Parameters Affecting Gases

- Pressure (P)
- Volume (V)
- Temperature (T)
- Number of Moles (n)
10.1 The Properties of Gases
10.2 Effusion and the Kinetic Molecular Theory of Gases
10.3 Atmospheric Pressure
10.4 The Gas Laws
10.5 The Combined Gas Law
10.6 Ideal Gases and the Ideal Gas Law
10.7 Densities of Gases
10.8 Gases in Chemical Reactions
10.9 Mixtures of Gases
10.10 Solubility of Gases and Henry's Law
10.11 Gas Diffusion: Molecules Moving Rapidly
10.12 Real Gases

Kinetic Molecular Theory (KMT)

Assumes that gas molecules:

1. Have tiny volumes compared with their container's volume
2. Don't interact with other gas molecules
3. Move randomly and constantly
4. Engage in elastic collisions with walls of container and other gas molecules
5. Have average kinetic energy that is proportional to absolute temperature

Kinetic Molecular Theory (cont.)

- Average Kinetic Energy: $\mathrm{KE}_{\text {avg }}=1 / 2 m u^{2}{ }_{\text {rms }}$
- $u_{\mathrm{rms}}=$ the root-mean-squared speed of the molecules;
$m=$ molecular mass .

Effusion

- Relative Rates of Effusion:
$\frac{(\text { Rate })_{\text {gas } 1}}{(\text { Rate })_{\text {gas } 2}}=\sqrt{\frac{M_{2}}{M_{1}}}$
where M is the molar mass
10.1 The Properties of Gases
10.2 Effusion and the Kinetic Molecular Theory of Gases
10.3 Atmospheric Pressure
10.4 The Gas Laws
10.5 The Combined Gas Law
10.6 Ideal Gases and the Ideal Gas Law
10.7 Densities of Gases
10.8 Gases in Chemical Reactions
10.9 Mixtures of Gases
10.10 Solubility of Gases and Henry's Law
10.11 Gas Diffusion: Molecules Moving Rapidly
10.12 Real Gases

The Gas Phase

- The Atmosphere:
- Layer of gases 50 km thick
- Composition is fairly consistent
- Properties vary with location
»Pressure, density

TABLE 10.1 Com	sition Air ${ }^{a}$
Compound	\% (by volume)
Nitrogen	78.08
Oxygen	20.95
Argon	0.934
Carbon dioxide	$0.0395^{\text {b }}$
Neon	0.0018
Helium	0.00052
Methane	0.00018
Krypton	0.00011
${ }^{a}$ Includes major and minor gases (with concentrations $>1 \mathrm{ppm}$ by volume). ${ }^{b}$ Value as of January 2013. Atmospheric CO_{2} is increasing by about 2 ppm each year.	

" Pressure:

- Force/unit area ($P=F / A$)
- Atmospheric pressure = pressure exerted due to gravity acting on air above Earth's surface
- Units of Pressure:
- SI units: newton/meter ${ }^{2}=1$ pascal (Pa)
- 1 standard atmosphere (1 atm) = 101,325 Pa
- 1 atm $=760 \mathrm{mmHg}=760$ torr

Measurement of Pressure

Barometer: measures atmospheric pressure

Height of Hg column based on balance of forces:

- gravity (pulls Hg down).
- atmospheric pressure (pushes Hg up into evacuated tube)

Elevation and Atmospheric Pressure

Relationship between Pressure Units

table 10.2 Units for Expressing Pressure

Unit	Value
Standard atmosphere (atm)	1 atm
Pascal (Pa)	$1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}$
Kilopascal (kPa)	$1 \mathrm{~atm}=101.325 \mathrm{kPa}$
Millimeter of mercury (mmHg)	$1 \mathrm{~atm}=760 \mathrm{mmHg}$
Torr	$1 \mathrm{~atm}=760 \mathrm{torr}$
Bar	$1 \mathrm{~atm}=1.01325 \mathrm{bar}$
Millibar (mbar or mb)	$1 \mathrm{~atm}=1013.25 \mathrm{mbar}$
Pounds per square inch (psi)	$1 \mathrm{~atm}=14.7 \mathrm{psi}$
Inches of mercury	$1 \mathrm{~atm}=29.92$ inches of Hg

Measuring Pressure: Manometer

Open systems:
$-\Delta h$ is negative if $P_{\text {gas }}<P_{\text {atm }}$ (d)
$-\Delta h$ is positive if $P_{\text {gas }}>P_{\text {atm }}$ (e)

10.1 The Properties of Gases
10.2 Effusion and the Kinetic Molecular Theory of Gases
10.3 Atmospheric Pressure
10.4 The Gas Laws
10.5 The Combined Gas Law
10.6 Ideal Gases and the Ideal Gas Law
10.7 Densities of Gases
10.8 Gases in Chemical Reactions
10.9 Mixtures of Gases
10.10 Solubility of Gases and Henry's Law
10.11 Gas Diffusion: Molecules Moving Rapidly
10.12 Real Gases

Boyle's Law

- Gases are compressible
- Pressure \uparrow as Volume \downarrow
- Boyle's Law:
- $P \propto 1 / V(T$ and n fixed)
- or, $P \times V=$ constant
- or, $P_{1} V_{1}=P_{2} V_{2}$
- Decreasing volume increases number of collisions/area; $\mathrm{P} \uparrow$ (KMT Postulates \#3 \& 4)

Practice: Boyle's Law

A balloon is filled with carbon dioxide to a pressure of 1.85 atm and has a volume of 1.54 L . If temperature remains constant, what is the final volume when the pressure is increased to 2.50 atm ?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Charles's Law

Charles's Law:

- $V \propto T$ (P, n constant)

$$
\text { or, } \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

Volume of a gas extrapolates to zero at absolute zero (0 K
$=-273^{\circ} \mathrm{C}$).
Kinetic energy \uparrow as $T \uparrow$; force of collisions increases and gas expands to maintain constant P (KMT Post. \#3, $4 \& 5$).

Avogadro's Law

- Volume is directly proportional to the number of moles of gas, $V \propto n$ (T, P constant)

$$
\begin{aligned}
& o r, \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}} \\
& o r, \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}
\end{aligned}
$$

Increasing n increases the number of collisions, gas expands to keep pressure constant (KMT Post. \#3 \& 4).

Amonton's Law

- $P \propto T$ (n, V constant $)$

$\frac{P}{T}=$ constant

P
$\frac{P}{T}=$ constant

Increasing T will increase force of collisions if volume is kept constant; P will increase (KMT

IPost. \#3, 4 \& 5).
10.1 The Properties of Gases
10.2 Effusion and the Kinetic Molecular Theory of Gases
10.3 Atmospheric Pressure
10.4 The Gas Laws
10.5 The Combined Gas Law
10.6 Ideal Gases and the Ideal Gas Law
10.7 Densities of Gases
10.8 Gases in Chemical Reactions
10.9 Mixtures of Gases
10.10 Solubility of Gases and Henry's Law
10.11 Gas Diffusion: Molecules Moving Rapidly
10.12 Real Gases

Combined Gas Law

- Boyle's Law: $P \times V=$ constant
- Charles's Law: VIT = constant
- Avogadro's Law: V/n = constant
- Combining the gas laws: $\frac{P \cdot V}{n \cdot T}=$ constant
- If n is constant, then $P V / T=$ constant, and

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Practice: Combined Gas

aw

A sample of oxygen gas is at 0.500 atm and occupies a volume of 10.0 L at $0^{\circ} \mathrm{C}$. What is the pressure of the gas if it is at 15.0 L at $25^{\circ} \mathrm{C}$?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:
10.1 The Properties of Gases
10.2 Effusion and the Kinetic Molecular Theory of Gases
10.3 Atmospheric Pressure
10.4 The Gas Laws
10.5 The Combined Gas Law
10.6 Ideal Gases and the Ideal Gas Law
10.7 Densities of Gases
10.8 Gases in Chemical Reactions
10.9 Mixtures of Gases
10.10 Solubility of Gases and Henry's Law
10.11 Gas Diffusion: Molecules Moving Rapidly
10.12 Real Gases

Ideal Gas Law

$n \cdot T$

This rearranges to: $P V=n R T$

```
R= universal gas constant = 0.08206 L.atm K-1 mol
P = pressure (in atm)
V = volume (in liters)
n = moles
T = temperature (in kelvin)
```


Universal Gas Constant

- Value of universal gas constant depends on the units
- Using SI units of V and P,

$$
R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

- Using 1 atm $=101.325 \mathrm{kPa}$ to convert to atm

$$
R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Practice: Ideal Gas Law

Calculate the moles of gas contained in a 4.0 L container at STP.

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Practice: Ideal Gas Law

Calculate the pressure of 4.0 mol of methane gas in a 12.3 L container at $25^{\circ} \mathrm{C}$.

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Practice: Ideal Gas Law

An experiment shows that a 0.281 g sample of an unknown gas occupies 127 mL at $98^{\circ} \mathrm{C}$ and 754 torr pressure. Calculate the molar mass of the gas. (Hint: $\mathfrak{M}=\mathrm{g} / n$)

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Reference Points for Gases

- Standard Temperature and Pressure (STP):
- $P=1$ atmosphere; $T=0^{\circ} \mathrm{C}(273 \mathrm{~K})$
- Molar Volume:
- For 1 mol of an ideal gas at STP (calculated from the ideal gas law):

$$
V=22.4 \mathrm{~L}
$$

10.1 The Properties of Gases
10.2 Effusion and the Kinetic Molecular Theory of Gases
10.3 Atmospheric Pressure
10.4 The Gas Laws
10.5 The Combined Gas Law
10.6 Ideal Gases and the Ideal Gas Law
10.7 Densities of Gases
10.8 Gases in Chemical Reactions
10.9 Mixtures of Gases
10.10 Solubility of Gases and Henry's Law
10.11 Gas Diffusion: Molecules Moving Rapidly
10.12 Real Gases

Densities of Gases

- Can be calculated from molar mass (\mathcal{M}) and molar volume (V/n).
- From Ideal Gas Law:

$$
P V=n R T \rightarrow \quad d=\frac{m}{V}=\frac{P \mathscr{M}}{R T}
$$

- Density:

$$
d=\frac{m}{V}=\frac{P \mathscr{M}}{R T}
$$

- When P in atm, T in kelvin, $d=\mathrm{g} / \mathrm{L}$

Buoyancy: Densities of Gases

Buoyancy depends on differences in gas densities.

Depends on:

1. Molar Masses $\mathrm{He}(\mathrm{g})=0.169 \mathrm{~g} / \mathrm{L}^{*}$ $\mathrm{N}_{2}(\mathrm{~g})=1.19 \mathrm{~g} / \mathrm{L}^{*}$
2. Temperature

Charles's Law: density \downarrow as Temp. \uparrow

* At $15^{\circ} \mathrm{C}$ and 1 atm

When $\mathrm{HNO}_{3}(\mathrm{aq})$ and $\mathrm{NaHCO}_{3}(\mathrm{aq})$ are mixed together, a reaction takes place in which a gas is one of the products. The gas has a $d=1.83$ g / L at 1.00 atm and $23^{\circ} \mathrm{C}$. What is the molar mass and identity of the gas?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:
10.1 The Properties of Gases
10.2 Effusion and the Kinetic Molecular Theory of Gases
10.3 Atmospheric Pressure
10.4 The Gas Laws
10.5 The Combined Gas Law
10.6 Ideal Gases and the Ideal Gas Law
10.7 Densities of Gases
10.8 Gases in Chemical Reactions
10.9 Mixtures of Gases
10.10 Solubility of Gases and Henry's Law
10.11 Gas Diffusion: Molecules Moving Rapidly
10.12 Real Gases

Stoichiometric Calculations Using Gases

- Stoichiometric Calculations:
- Depend on mole/mole ratios of reactants and/or products
- Moles of gas can be calculated from ideal gas law if P, V, and T are known

$$
n=\frac{P V}{R T}
$$

Practice: Gas Stoichiometry

Automobile air bags inflate during a crash or sudden stop by the rapid generation of $\mathrm{N}_{2}(g)$ from sodium azide:

$$
2 \mathrm{NaN}_{3}(s) \rightarrow 2 \mathrm{Na}(s)+3 \mathrm{~N}_{2}(g)
$$

How many grams of sodium azide are needed to produce sufficient $\mathrm{N}_{2}(g)$ to fill a $48 \times 48 \times 25 \mathrm{~cm}$ bag to a pressure of 1.20 atm at $15^{\circ} \mathrm{C}$?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:
10.1 The Properties of Gases
10.2 Effusion and the Kinetic Molecular Theory of Gases
10.3 Atmospheric Pressure
10.4 The Gas Laws
10.5 The Combined Gas Law
10.6 Ideal Gases and the Ideal Gas Law
10.7 Densities of Gases
10.8 Gases in Chemical Reactions
10.9 Mixtures of Gases
10.10 Solubility of Gases and Henry's Law
10.11 Gas Diffusion: Molecules Moving Rapidly
10.12 Real Gases

Dalton's Law of Partial Pressures

- For a mixture of gases in a container:
- $P_{\text {total }}=P_{1}+P_{2}+P_{3}+\ldots$

Total pressure depends only on total number moles of gas, not on their identities (KMT Post. \#2).

Mole Fraction \& Partial Pressure

- Mole Fraction:
- Ratio of the \# of moles of a given component in a mixture to the total \# of moles in a mixture:

$$
x_{1}=\frac{n_{1}}{n_{\text {total }}}=\frac{n_{1}}{n_{1}+n_{2}+n_{3}+\ldots}
$$

- Mole Fraction in Terms of Pressure:
- When V and T are constant, $P \propto n$

Mole Fraction \& Partial Pressure (cont'd)

Since $P \propto n$

$$
x_{1}=\frac{P_{1}}{P_{\text {total }}}
$$

And:

$$
x_{1}=\frac{P_{1}}{P_{\text {total }}}
$$

Then...

$$
x_{1}=\frac{P_{1}}{P_{\text {total }}}
$$

Practice: Mole Fraction

At $25^{\circ} \mathrm{C}$, a 1.0 L flask contains 0.030 mol of oxygen, 150.0 mg of nitrogen, and
2.6×10^{21} molecules of carbon dioxide. Calculate the partial pressure and mole fraction of each gas.

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Collecting a Gas over Water

$2 \mathrm{KClO}_{3}(s) \rightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)$

Gases collected:
$\mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
P_{\text {total }}=P_{\mathrm{O}_{2}}+P_{\mathrm{H}_{2} \mathrm{O}}
$$

Practice: Partial Pressure of Water

A sample of KClO_{3} is heated and decomposes to produce O_{2} gas. The gas is collected by water displacement at $25^{\circ} \mathrm{C}$. The total volume of the collected gas is 329 mL at a pressure of 744 torr. How many moles of oxygen are formed?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:
10.1 The Properties of Gases
10.2 Effusion and the Kinetic Molecular Theory of Gases
10.3 Atmospheric Pressure
10.4 The Gas Laws
10.5 The Combined Gas Law
10.6 Ideal Gases and the Ideal Gas Law
10.7 Densities of Gases
10.8 Gases in Chemical Reactions
10.9 Mixtures of Gases
10.10 Solubility of Gases and Henry's Law
10.11 Gas Diffusion: Molecules Moving Rapidly
10.12 Real Gases

Solubility of Gases

- Solubility of gases depends on T and P

Solubility \uparrow as Pressure \uparrow

Solubility \downarrow as Temperature \uparrow

Henry's Law

- Henry's Law:
- The higher the partial pressure of the gas above a liquid, the more soluble
- $C_{\text {gas }} \propto P_{\text {gas }}$
- $C_{\text {gas }}=k_{H} P_{\text {gas }}$

10.1 The Properties of Gases
10.2 Effusion and the Kinetic Molecular Theory of Gases
10.3 Atmospheric Pressure
10.4 The Gas Laws
10.5 The Combined Gas Law
10.6 Ideal Gases and the Ideal Gas Law
10.7 Densities of Gases
10.8 Gases in Chemical Reactions
10.9 Mixtures of Gases
10.10 Solubility of Gases and Henry's Law
10.11 Gas Diffusion: Molecules Moving Rapidly
10.12 Real Gases

Diffusion and Effusion

- Graham's Law:

- Relative Rates of Effusion: $\frac{\left(\text { Distance }_{g s s 1}\right.}{(\text { Distance })_{g s 82}}=\sqrt{\frac{M_{1}}{M_{2}}}$
- Diffusion (Distance): $\frac{(\text { Distance })_{\text {gas } 1}}{(\text { Distance })_{\operatorname{gas} 2}}=\sqrt{\frac{M_{1}}{M_{2}}}$

Practice: Graham's Law

List the following gases, which are at the same temperature, in the order of increasing rates of diffusion: $\mathrm{He}, \mathrm{Kr}, \mathrm{NO}, \mathrm{O}_{2}$

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Practice: Graham's Law

Calculate the molar mass of a gas if equal volumes of oxygen gas and the unknown gas take 3.25 and 4.60 min, respectively, to effuse through a small hole at constant pressure and temperature.

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:
10.1 The Properties of Gases
10.2 Effusion and the Kinetic Molecular Theory of Gases
10.3 Atmospheric Pressure
10.4 The Gas Laws
10.5 The Combined Gas Law
10.6 Ideal Gases and the Ideal Gas Law
10.7 Densities of Gases
10.8 Gases in Chemical Reactions
10.9 Mixtures of Gases
10.10 Solubility of Gases and Henry's Law
10.11 Gas Diffusion: Molecules Moving Rapidly
10.12 Real Gases

Real Gases

Ideal gas behavior must be corrected when at high pressure (smaller volume) and low temperature (attractive forces become important).

Ideal vs. Real Gases

- Assumptions of Kinetic Molecular Theory:
- \#1: $V_{\text {gas }}$ is negligible compared to $V_{\text {container }}$
- \#5: Gas molecules act independently (i.e., don't interact with each other).
- Valid at STP, but not at higher pressures:
- Volume occupied by gas molecules is not negligible.
- Attractive forces between gas molecules are significant.

Deviations from Ideal Behavior

Real Gases

Corrections to Ideal Gas Law:

- van der Waals Equation

$$
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
$$

corrected pressure corrected volume $P_{\text {ideal }}$

ChemTours: Chapter 10

Chaporor MOLECULAR SPEED
 Introduction

The ideal gas law is a mathematical description of the macroscopic (large scale) behavior of gases. The kinetic molecular theory is a model, based on rigorous mathematical derivations, which explains macroscopic gas behavior at the molecular or individual particle level. In order to understand the kinetic molecular theory, you must understand how the speeds of gases affect their average kinetic energy.
next section

This concludes the Lecture PowerPoint presentation for Chapter 10

CHEMISTRY

an atoms-focused approach

GILBERT KIRSS
 FOSTER

