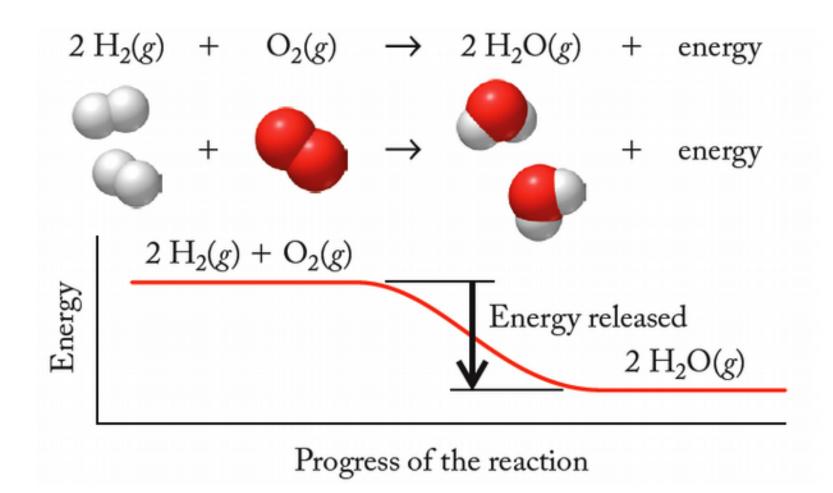

CHEMSTRY Gilbert An atoms-focused approach Foster

Chapter 9 Thermochemistry Energy Changes in Chemical Reactions

Chapter Outline

- 9.1 Energy as a Reactant or Product
- 9.2 Transferring Heat and Doing Work
- 9.3 Enthalpy and Enthalpy Changes
- 9.4 Heating Curves and Heat Capacity
- 9.5 Heats of Reaction and Calorimetry
- 9.6 Hess's Law and Standard Heats of Reactions
- 9.7 Heats of Reactions from Heats of Formation and Bond Energies
- 9.8 Applications



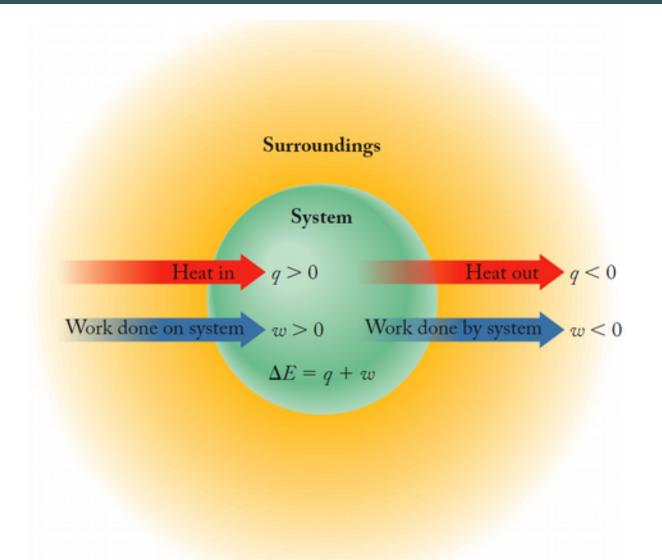
- **Thermodynamics:** The study of energy and its transformation
- Thermochemistry: The study of the relation between chemical reactions and changes in energy
 - Thermochemical equation:
 - $2H_2(g) + O_2(g) \rightarrow 2H_2O(\ell) + energy$
- Thermochemical Equilibrium: A condition in which temperature is uniform throughout a material

Energy of Chemical Reactions

First Law of Thermodynamics

- Law of Conservation of Energy:
 - Energy cannot be created or destroyed
 - It <u>can</u> be converted from one form to another
 - Potential energy \rightarrow kinetic energy
 - Chemical energy \rightarrow heat

- **System:** The part of the universe that is the focus of a thermodynamic study
 - Isolated / open / closed
- Surroundings: Everything in the universe that is <u>not</u> part of the system
- Universe = System + Surroundings


- Internal Energy:
 - State Function: Depends only on total KE and PE of all components of the system

•
$$\Delta E = E_{\text{final}} - E_{\text{initial}}$$

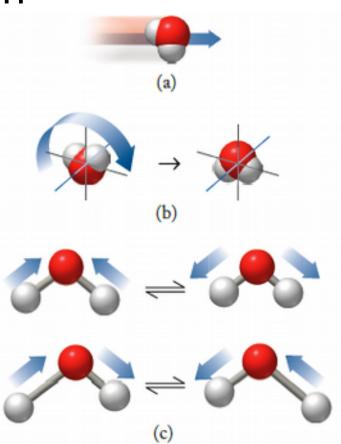
•
$$\Delta E = q + w$$

- ΔE = change in system's internal energy
- q = heat or thermal energy, w = work

Energy Flow Diagrams

TABLE 9.1Flows of Heat and
Work and Their
Impact on E
sys

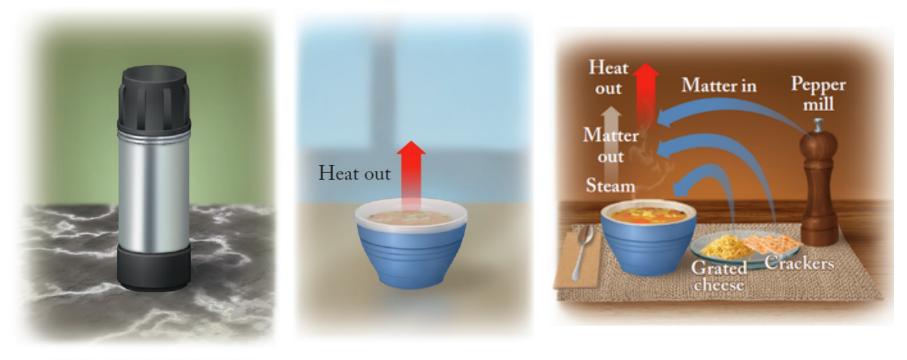
Processes That Increase E _{sys}	Result
Surroundings hotter than the system, so heat flows into the system	q > 0
Surroundings do work on the system	w > 0
Processes That Decrease E _{sys}	Result
Processes That Decrease <i>E</i> sys System hotter than its surroundings, so heat flows into surroundings	Result $q < 0$


Types of Molecular Motion

Types of molecular motion

 a) translational

b) rotational


c) vibrational

Chapter Outline

- 9.1 Energy as a Reactant or Product
- 9.2 Transferring Heat and Doing Work
- 9.3 Enthalpy and Enthalpy Changes
- 9.4 Heating Curves and Heat Capacity
- 9.5 Heats of Reaction and Calorimetry
- 9.6 Hess's Law and Standard Heats of Reactions
- 9.7 Heats of Reactions from Heats of Formation and Bond Energies
- 9.8 Applications

Types of Systems

(a) Isolated system

(b) Closed system

(c) Open system

Heat Flow

Exothermic

Exothermic process: Heat flows out of system to surroundings (q < 0)

 Endothermic process: Heat flows into system from surroundings (q > 0)

Heat in

Endothermic

P-V Work

- Work:
 - $w = -P\Delta V$

where P = pressure, ΔV = change in volume

- Work <u>done</u> by the system = energy <u>lost</u> by the system, w < 0
- Example: Expansion of a gas

•
$$\Delta E = q + w$$

= $q + (-P\Delta V)$
= $q - P\Delta V$

Units of Energy

- Energy = heat and/or work (same units!)
- Calorie (cal)
 - Amount of heat necessary to raise the temperature of 1 g of water by 1°C
- Joule (J)
 - The SI unit of energy
 - 4.184 J = 1 cal
 - 101.32 J = 1 L·atm

Calculate the work in L·atm and joules associated with the expansion of a gas in a cylinder from 54 L to 72 L at a constant external pressure of 18 atm.

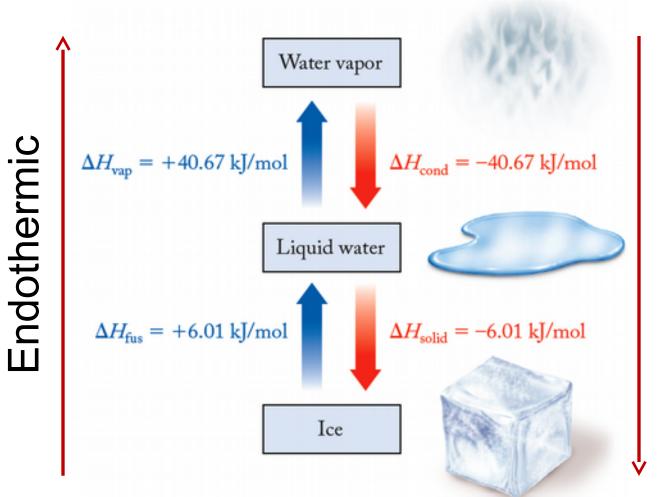
- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

- 9.1 Energy as a Reactant or Product
- 9.2 Transferring Heat and Doing Work
- 9.3 Enthalpy and Enthalpy Changes
- 9.4 Heating Curves and Heat Capacity
- 9.5 Heats of Reaction and Calorimetry
- 9.6 Hess's Law and Standard Heats of Reactions
- 9.7 Heats of Reactions from Heats of Formation and Bond Energies
- 9.8 Applications

Enthalpy and Enthalpy Changes

- Enthalpy: H = E + PV
- Enthalpy change: $\Delta H = \Delta E + P \Delta V$
- ΔH = energy absorbed by reactants (endothermic), or energy given off by products (exothermic) for a reaction carried out at constant pressure

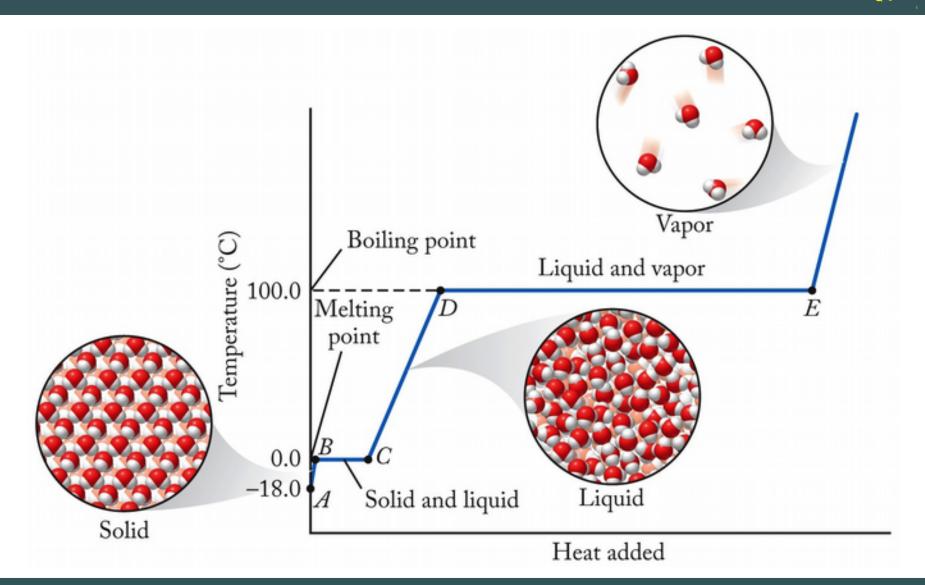

$$\Delta H = q_{\rm P} = \Delta E + P \Delta V$$

- $\Delta H > 0$, endothermic; $\Delta H < 0$, exothermic
- Subscripts for ∆H indicate specific processes

Enthalpy Change

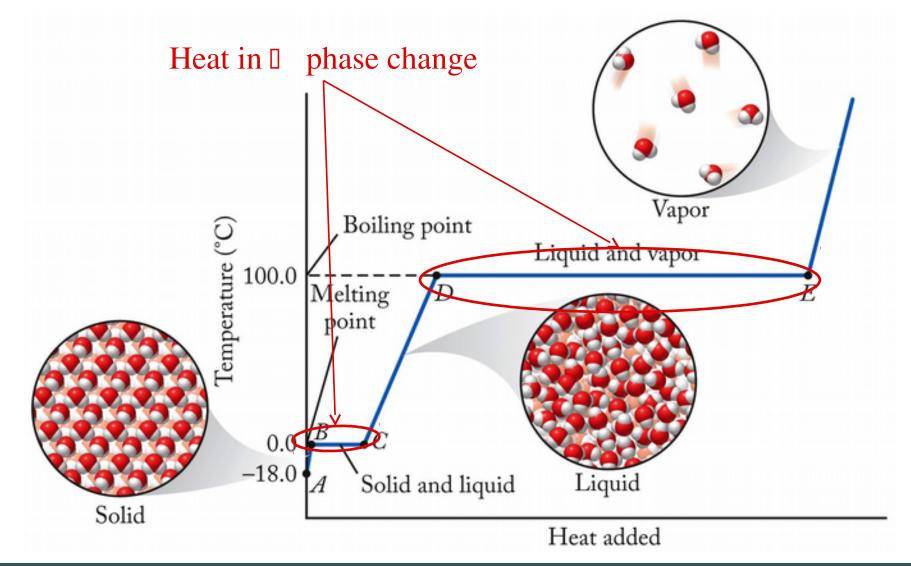
- Enthalpy of fusion, ΔH_{fus} : Energy required to convert a given amount (either in mol or g) of solid at its melting point into liquid state
- Enthalpy of vaporization, ΔH_{vap} : Energy required to convert a given amount (either in mol or g) of liquid at its boiling point into vapor state

Enthalpy Change



Exothermic

Chapter Outline


- 9.1 Energy as a Reactant or Product
- 9.2 Transferring Heat and Doing Work
- 9.3 Enthalpy and Enthalpy Changes
- 9.4 Heating Curves and Heat Capacity
- 9.5 Heats of Reaction and Calorimetry
- 9.6 Hess's Law and Standard Heats of Reactions
- 9.7 Heats of Reactions from Heats of Formation and Bond Energies
- 9.8 Applications

Heating Curve

Heating Curve

Heat Capacities

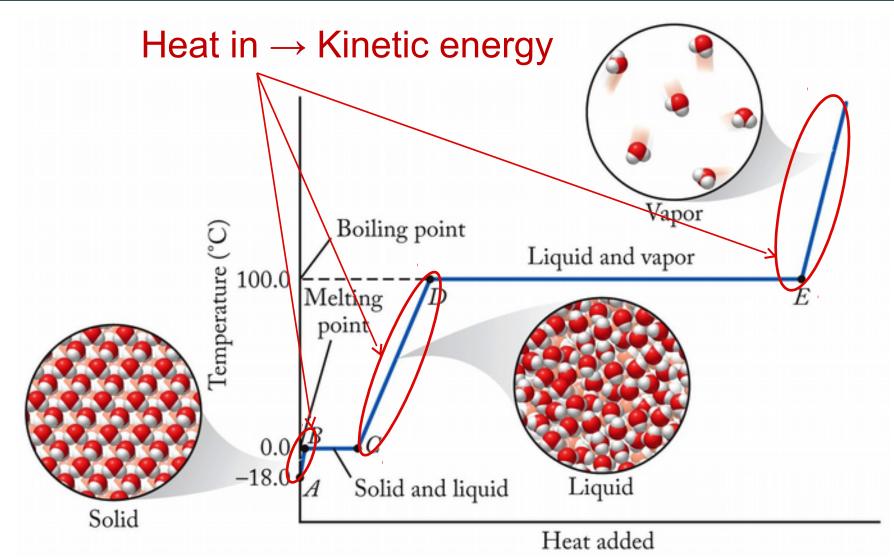
Heat capacity (C_p)

 Quantity of energy needed to raise the temperature of an object by 1°C (at constant P)

Molar heat capacity (c_p)

 Quantity of energy required to raise the temperature of 1 mol of a substance by 1°C

•
$$q = nc_{p}\Delta T$$
 ($c_{p} = J / (mol^{\circ}C)$)


Specific heat (c_s)

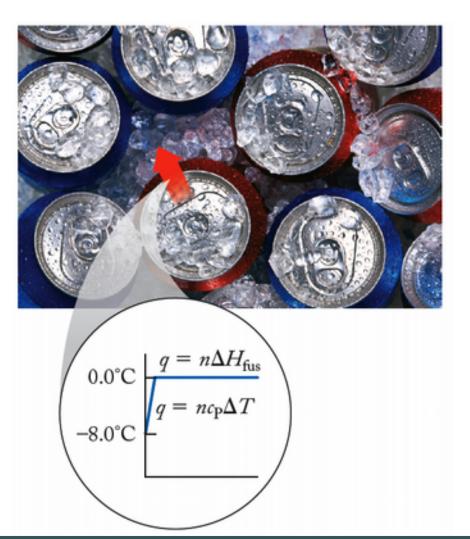
 Quantity of energy required to raise the temperature of 1 g of a substance by 1°C (at constant P)

•
$$q = mc_s \Delta T$$
 ($c_s = J / (g^{\circ}C)$

Heating Curve

TABLE 9.3 Specific Heat and Molar Heat Capacity Values			
SUBSTANCE	PHASE	c _p [J/(g · °C)]	c _{P,n} [J/(mol · °C)]
Elements			
Aluminum	(s)	0.897	24.2
Carbon (graphite)	(s)	0.71	8.5
Chromium	(\$)	0.449	23.3
Copper	(s)	0.385	24.5
Gold	(s)	0.129	25.4
Iron	(s)	0.45	25.1
Lead	(s)	0.129	26.7
Silver	(s)	0.233	25.1
Tin	(5)	0.227	26.9
Titanium	(s)	0.523	25.0
Zinc	(s)	0.387	25.3
Compounds			
Silicon dioxide	(s)	0.703	42.2
Water (-10°C)	(s)	2.11	38.0
Water (25°C)	(ℓ)	4.18	75.3
Water (102°C)	(g)	1.89	34.1
Ammonia	(l)	4.75	80.9
Mixture			
Air"	(g)	1.003	29.1

"Dry air at 0°C and 1 atmosphere of pressure.


Heat Transfer Calculations

- Transfer of heat between systems
- Calculated based on the first law of thermodynamics

 $q_{\text{lost}} = -q_{\text{gained}}$

Cooling Curves

- Heat transfer: Ice @ -8.0°C to water @ 0.0 °C
 - 1. Temp change:
 - $q_1 = nc_p \Delta T$
 - 2. Phase change:
 - $q_2 = n \Delta H_{\text{fus}}$

Practice: Specific Heat Capacity

During a strenuous workout, a student generates 2000 kJ of heat energy. What mass of water would have to evaporate from the student's skin to dissipate this much heat?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Practice: Final Temperature

You heated 500 mL chicken broth to 99°C, which is too hot to consume. How many mL of cold chicken broth (12°C) must you add to the hot broth to get the temperature of the mixture down $37^{\circ}C$? (assume $c_{broth} = 4.184 \text{ J/g}^{\circ}C$, D = 1.0 g/mL)

- Collect and Organize
- Analyze:
- Solve:
- Think about It:

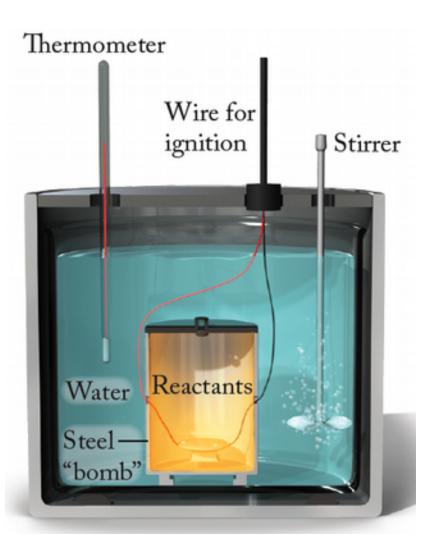
Chapter Outline

- 9.1 Energy as a Reactant or Product
- 9.2 Transferring Heat and Doing Work
- 9.3 Enthalpy and Enthalpy Changes
- 9.4 Heating Curves and Heat Capacity
- 9.5 Heats of Reaction and Calorimetry
- 9.6 Hess's Law and Standard Heats of Reactions
- 9.7 Heats of Reactions from Heats of Formation and Bond Energies
- 9.8 Applications

Calorimetry

Calorimetry

 Experimental measurement of heat transferred during a physical change or chemical change


Calorimeter

- Device used to measure the absorption or release of heat by a physical change or chemical process
- Closed system! $-q_{system} = q_{calorimeter}$

Heat of Reaction

- Bomb calorimeter:
 - Constant-volume device used to measure the energy released during a combustion reaction
 - Heat produced by reaction = heat gained by calorimeter

•
$$q_{cal} = C_{cal} \Delta T = -\Delta H_{rxn}$$

Practice: Heat of Reaction

When 25 mL of 0.100 M reactant A are added to 25 mL of 0.100 M reactant B in a coffee cup calorimeter at 18.5°C, the temperature of the mixture increases to 25.0°C. If the densities of the two solutions are 1.00 g/mL, what is the Δ H per mol of A reacted? Assume the heat capacity of the calorimeter is 0 J/°C.

$A(aq) + B(aq) \rightarrow products$

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

- 9.1 Energy as a Reactant or Product
- 9.2 Transferring Heat and Doing Work
- 9.3 Enthalpy and Enthalpy Changes
- 9.4 Heating Curves and Heat Capacity
- 9.5 Heats of Reaction and Calorimetry
- 9.6 Hess's Law and Standard Heats of Reactions
- 9.7 Heats of Reactions from Heats of Formation and Bond Energies
- 9.8 Applications

- Hess's Law of Constant Heat of Summation:
 - The ΔH°_{rxn} for a reaction that is the sum of two or more reactions is equal to the sum of the ΔH°_{rxn} values of the constituent reactions.
 - 1. $CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g) \qquad \Delta H_1$ 2. $CO(g) + 3H_2(g) + H_2O(g) \rightarrow 4H_2(g) + CO_2(g) \qquad \Delta H_2$ 3. $CH_4(g) + 2H_2O(g) \rightarrow 4H_2(g) + CO_2(g) \qquad \Delta H_3$ $\Delta H_3 = \Delta H_1 + \Delta H_2$

- 1. If a reaction is reversed, ΔH sign changes. $N_2(g) + O_2(g) \rightarrow 2NO(g) \quad \Delta H = 180 \text{ kJ}$ $2NO(g) \rightarrow N_2(g) + O_2(g) \quad \Delta H = -180 \text{ kJ}$
- If the coefficients of a reaction are multiplied by an integer, ∆H is multiplied by the same integer.

 $6NO(g) \rightarrow 3N_2(g) + 3O_2(g) \quad \Delta H = 3(-180 \text{ kJ})$

 $\Delta H = -540 \text{ kJ}$

Using the following data, calculate the ΔH_{rxn} for the following reaction. $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$ ΔH_{rxn} $H_2(g) + 1/2O_2(g) \rightarrow H_2O(\ell)$ -285.8 kJ $C_2H_4(g) + 3O_2(g) \rightarrow 2H_2O(\ell) + 2CO_2(g)$ -1411 kJ $C_2H_6(g) + 7/2O_2(g) \rightarrow 3H_2O(\ell) + 2CO_2(g)$ -1560 kJ

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

- 9.1 Energy as a Reactant or Product
- 9.2 Transferring Heat and Doing Work
- 9.3 Enthalpy and Enthalpy Changes
- 9.4 Heating Curves and Heat Capacity
- 9.5 Heats of Reaction and Calorimetry
- 9.6 Hess's Law and Standard Heats of Reactions
- 9.7 Heats of Reactions from Heats of Formation and Bond Energies
- 9.8 Applications

Enthalpy of Formation, ΔH_{f}°

- The standard enthalpy of formation, ΔH_{f}°
 - The enthalpy change for the process of forming 1 mol of a substance from its constituent elements in their *standard states**
 - e.g., formation reaction for NO:
 - $\frac{1}{2} \operatorname{N}_2(g) + \frac{1}{2} \operatorname{O}_2(g) \rightarrow \operatorname{NO}(g)$
 - $\Delta H_{\rm rxn} = \Delta H_{\rm f}^{\rm o}$ (NO)
- (*The standard state of an element is its most stable form under 1atm pressure and 25°C.)

Standard Enthalpy of Reactions

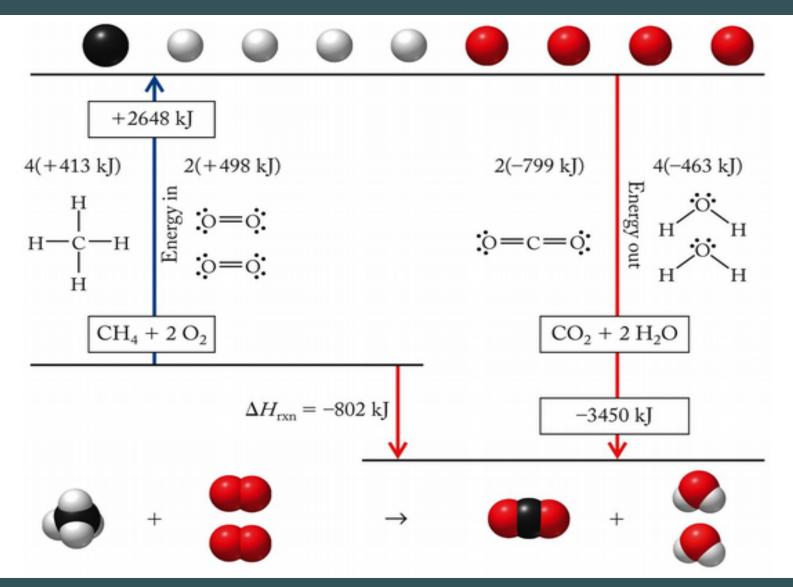
- Standard enthalpy of reaction (ΔH°_{rxn})
 - Enthalpy change associated with a reaction that takes place under standard conditions
 - Also called standard heat of reaction
- Calculated from ΔH_{f}^{o} (see Appendix 4)
 - $\Delta H^{\circ}_{rxn} = \Sigma n_{p} \Delta H^{\circ}_{f} (products) \oplus$ $n_{r} \Delta H^{\circ}_{f} (reactants)$

Methods of Determining ΔH°_{rxn}

- 1. From calorimetry experiments:
 - $\Delta H^{\circ}_{rxn} = C_{cal} \Delta T$
- 2. From enthalpies of formation:
 - $\Delta H^{\circ}_{rxn} = \Sigma n_{p} \Delta H^{\circ}_{f} (products) \Sigma n_{r} \Delta H^{\circ}_{f} (reactants)$
 - $\Delta H_{\rm f}^{\circ}$ values listed in Appendix 4.
- 3. Using Hess's law (Section 9.6)

Practice: Using $\Delta H_{\rm f}^{\circ}$ to find $\Delta H_{\rm rxn}^{\circ}$

Use Table 9.4 to calculate an approximate enthalpy of reaction for $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(\ell)$


- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

- Bond Energy: Enthalpy change that occurs when 1 mol of bonds in the gas phase are broken
- Bond energy is also a measure of the bond strength. The larger the bond energy, the stronger the bond.

Bond Energies

Chapter Outline

- 9.1 Energy as a Reactant or Product
- 9.2 Transferring Heat and Doing Work
- 9.3 Enthalpy and Enthalpy Changes
- 9.4 Heating Curves and Heat Capacity
- 9.5 Heats of Reaction and Calorimetry
- 9.6 Hess's Law and Standard Heats of Reactions
- 9.7 Heats of Reactions from Heats of Formation and Bond Energies
- 9.8 Applications

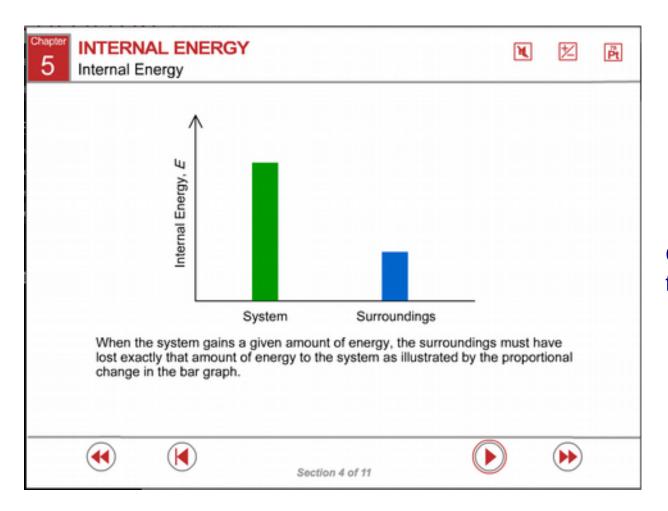
- Fuel value = Energy released during complete combustion of 1 g of a substance
 - $CH_4(g)$ + $2O_2(g) \rightarrow CO_2(g)$ + $2H_2O(g)$
 - $\Delta H^{\circ}_{\text{comb}}$ = -802.3 kJ/mol
 - Fuel value = (802.3 kJ/mol)[.](1 mol/16.04 g)

• =
$$50.02 \text{ kJ/g}$$

 Fuel density = Energy released during complete combustion of 1 L of a liquid fuel

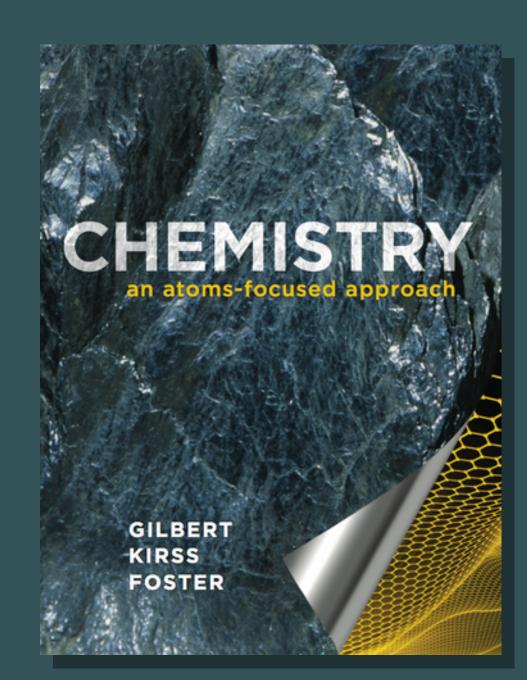
Fuel Values

Substance	MW (g/mol)	Fuel Value (kJ/g)
CH ₄ , methane	16.04	54.0
C ₃ H ₈ , propane	44.09	50.3
$C_{5}H_{12}$, pentane	72.14	48.8
C ₉ H ₂₀ , avg. gasoline compound	128.25	47.4
C ₁₄ H ₃₀ , avg. diesel compound	198.37	44.8



- Quantity of energy produced when a material consumed by an organism for sustenance is burned completely
 - Determined by bomb calorimetry
 - Nutritional calorie = 1 kcal = 4.184 kJ

Food Category	Food Value (Cal or kcal/g)	Food Value (kJ/g)
Proteins	4.0	16.7
Carbohydrates	4.0	16.7
Fats	9.0	37.7


ChemTours: Chapter 9

Click here to launch the ChemTours website This concludes the Lecture PowerPoint presentation for Chapter 9

CHEMISTRY an atoms-focused approach

> GILBERT KIRSS FOSTER

© 2014 W. W. Norton Co., Inc.