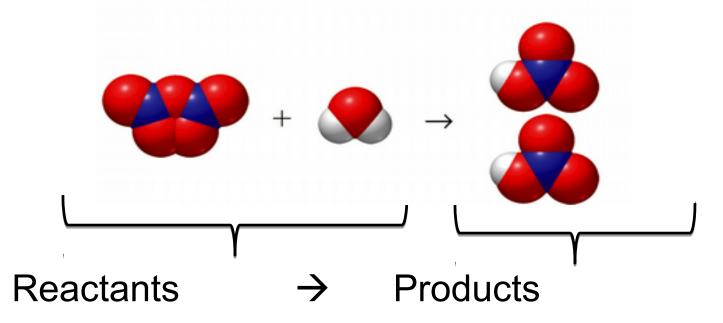

CHEMSTRY Gilbert an atoms-focused approach Foster

Chapter 7 Stoichiometry Mass Relationships and Chemical Reations


Chapter Outline

- 7.1 Chemical Reactions and the Conservation of Mass
- 7.2 Balancing Chemical Equations
- 7.3 Combustion Reactions
- 7.4 Stoichiometric Calculations and the Carbon Cycle
- 7.5 Percent Composition and Empirical Formulas
- 7.6 Empirical and Molecular Formulas
- 7.7 Combustion Analysis
- 7.8 Limiting Reagents and Percent Yield

Combination Reaction: two or more substances combine to form one product.

 $N_2O_5(g) + H_2O(\ell) \rightarrow 2 HNO_3(aq)$

Chemical Equation

- Chemical equation:
 - Describes proportions of reactants (the substances that are consumed) and products (the substances that are formed) during a chemical reaction.
 - Describes the changes on the atomic level.
 - $SO_3(g) + H_2O(I) \rightarrow H_2SO_4(I)$
 - $Fe_2O_3(s) + 3H_2SO_4(aq) \rightarrow 3H_2O(I) + Fe_2(SO_4)_3(aq)$
 - Physical state of reactants and products:
 - (s) = solid; (l) = liquid; (g) = gas; (aq) = aqueous soln.

States of Substances

 States are shown by abbreviations in parenthesis after each chemical

 $H_{2}O(s), H_{2}O(l), H_{2}O(g)$

- Standard phases are:
 - (s) solid
 - (I) liquid
 - (g) gas
 - (aq) aqueous dissolved in water
 - $-(\uparrow)$ gas produced from aqueous phase
 - $-(\downarrow)$ solid produced from aqueous phase

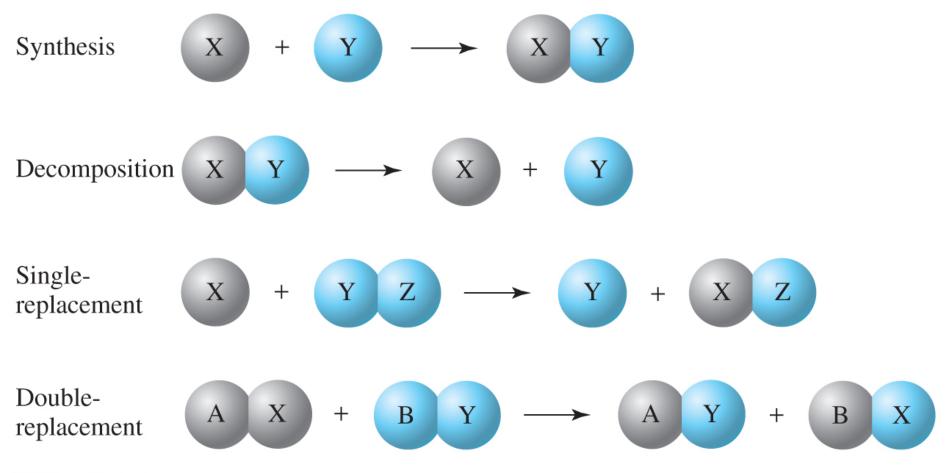
Synthesis – compound formed from its base elements:

 $N_2 + 3H_2 \rightarrow 2NH_3$

 Decomposition – compound decomposes into its base elements:

$$2NH_3 \rightarrow N_2 + 3H_2$$

Types of Reactions


 Single replacement – an element replaces another in a compound:

$$2NaBr + I_2 \rightarrow 2NaI + Br_2$$

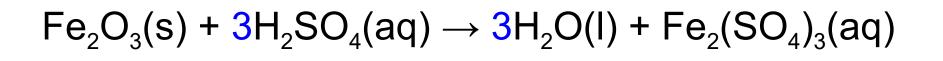
 Double replacement – two elements or polyatomic ions in two separate compounds switch places:

$$KNO_3 + Ca(OH)_2 \rightarrow KOH + Ca(NO_3)_2$$

Types of Reactions

© 2011 Pearson Education, Inc.

 Complete combustion – fuel and oxygen produce water and carbon dioxide:


$$CH_4 + O_2 \rightarrow H_2O + CO_2$$

 Incomplete combustion – fuel and oxygen produce water and carbon Monoxide:

$$CH_4 + O_2 \rightarrow H_2O + CO$$

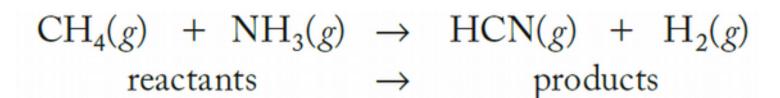
Law of Conservation of Mass

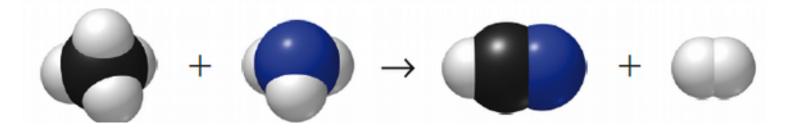
- Law of conservation of mass
 - The sum of the masses of the reactants in a chemical equation is equal to the sum of the masses of the products.
- Stoichiometry
 - Quantitative relation between reactants and products in a chemical equation
 - Indicated in chemical equation by coefficients

- Chemical Equation
 - Indicates substances involved (reactants, products)
 - Coefficients
 - Indicate proportions of reactants and/or products
 - On macroscale, indicate number of moles of each substance.

Chapter Outline

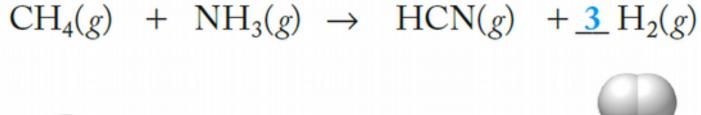
- 7.1 Chemical Reactions and the Conservation of Mass
- 7.2 Balancing Chemical Equations
- 7.3 Combustion Reactions
- 7.4 Stoichiometric Calculations and the Carbon Cycle
- 7.5 Percent Composition and Empirical Formulas
- 7.6 Empirical and Molecular Formulas
- 7.7 Combustion Analysis
- 7.8 Limiting Reagents and Percent Yield

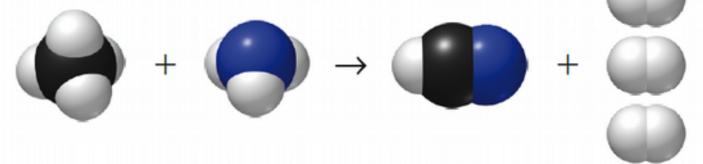

Balancing Chemical Equations


- Balanced chemical equations follow the law of conservation of mass.
 - (not balanced)

Balancing Chemical Equations

- Three Step Approach:
 - Write correct formulas for reactants and products, including physical states.
 - Balance an element that appears in <u>only one</u> reactant and product first.
 - Choose coefficients to balance other elements as needed.
 - Reduce coefficients to lowest whole numbers.



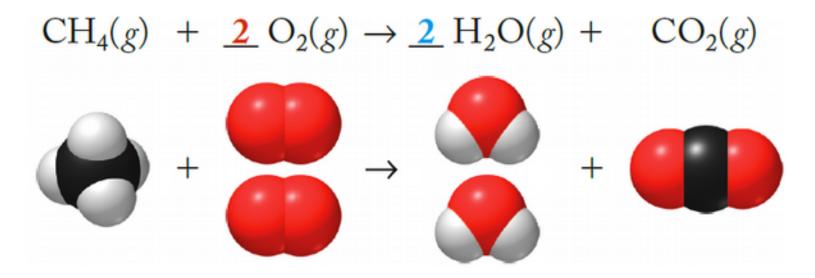


Element	Reactant Side	Product Side	Balanced?
С	1	1	
Ν	1	1	
Н	4 + 3 = 7	1 + 2 = 3	×

Balancing Chemical Equations

Element	Reactant Side	Product Side	Balanced?
С	1	1	~
Ν	1	1	~
Н	4 + 3 = 7	$1 + (3 \times 2) = 7$	~

Chapter Outline


- 7.1 Chemical Reactions and the Conservation of Mass
- 7.2 Balancing Chemical Equations
- 7.3 Combustion Reactions
- 7.4 Stoichiometric Calculations and the Carbon Cycle
- 7.5 Percent Composition and Empirical Formulas
- 7.6 Empirical and Molecular Formulas
- 7.7 Combustion Analysis
- 7.8 Limiting Reagents and Percent Yield

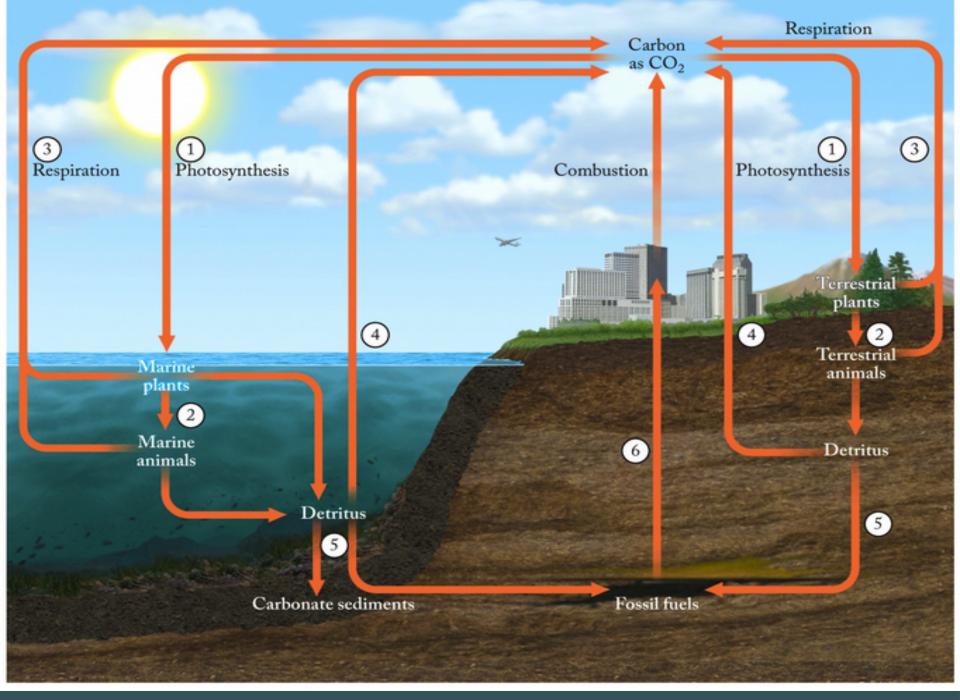
Combustion Reactions

- Hydrocarbons:
 - molecular compounds composed of only hydrogen and carbon.
 - "organic" compounds.
 - Combustion products are CO₂ and H₂O.

 $CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$

Combustion Reactions

Element	Reactant Side	Product Side	Balanced?
С	1	1	×
Н	4	$2 \times 2 = 4$	~
0	$2 \times 2 = 4$	$(2 \times 1) + 2 = 4$	~


Balance the following combustion reaction.

a) $C_5H_{12} + O_2 \rightarrow CO_2 + H_2O$

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

- 7.1 Chemical Reactions and the Conservation of Mass
- 7.2 Balancing Chemical Equations
- 7.3 Combustion Reactions
- 7.4 Stoichiometric Calculations and the Carbon Cycle
- 7.5 Percent Composition and Empirical Formulas
- 7.6 Empirical and Molecular Formulas
- 7.7 Combustion Analysis
- 7.8 Limiting Reagents and Percent Yield

© 2014 W. W. Norton Co., Inc.

Photosynthesis and Respiration

- Photosynthesis:
 - Plants convert CO₂ and H₂O into glucose:
 - $CO_2(g) + 6H_2O(I) \rightarrow C_6H_{12}O_6(aq) + 6O_2(g)$
- Respiration (reverse of photosynthesis):
 - Living organisms use glucose as a source of energy:
 - $C_6H_{12}O_6(aq) + 6O_2(g) \rightarrow CO_2(g) + 6H_2O(I)$
- Combustion of Hydrocarbons
 - Returns 6.8 x 10¹² kg/yr of C to atmosphere.

Stoichiometric Calculations

- Calculating the mass of a product from the mass of a reactant requires:
 - The **mole ratio** from the balanced chemical equation.
 - Molar mass of the reactant.
 - Molar mass of the product.

Stoichiometry Example

- How much CO₂ enters the atmosphere annually from the combustion of 6.8 x 10¹² kg of Carbon?
- Balanced Eq'n: $C(s) + O_2(g) \rightarrow CO_2(g)$ $(6.8 \times 10^{12} \text{ kg C}) \longrightarrow = ?$ $2.5 \times 10^{13} \text{ kg CO}_2$ (1000 g) (1 mole C) $(1 \text{ mole } CO_2)$ $(1 \text{ mole } CO_2)$ $(1 \text{ mole } CO_2)$

How much carbon dioxide would be formed if 10.0 grams of $C_{3}H_{8}$ were completely burned in oxygen?

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

- 7.1 Chemical Reactions and the Conservation of Mass
- 7.2 Balancing Chemical Equations
- 7.3 Combustion Reactions
- 7.4 Stoichiometric Calculations and the Carbon Cycle
- 7.5 Percent Composition and Empirical Formulas
- 7.6 Empirical and Molecular Formulas
- 7.7 Combustion Analysis
- 7.8 Limiting Reagents and Percent Yield

Percent Composition

- Percent Composition:
 - the composition of a compound expressed in terms of the percentage by mass of each element
 - <u>mass of element in compound</u> x 100% mass of compound

Percent Composition

• Example: percent C in CH_4 and $C_{10}H_{16}$:

$$\left(\frac{\text{mass C}}{\text{mass CH}_4}\right) \left(\frac{(12.01 \text{ g/mol C})}{16.04 \text{ g/mol CH}_4}\right) \times 100 = 74.88\%$$

$$\left(\frac{\text{mass C}}{\text{mass C}_{10}\text{H}_{16}}\right) \left(\frac{(12.01 \text{ g/mol C}) \times 10}{136.23 \text{ g/mol C}_{10}\text{H}_{16}}\right) \times 100 = 88.16\%$$

Empirical Formula

• Empirical Formula:

- Formula based on the lowest whole number ratio of its component elements
- C₄H₈ reduces to CH₂
- Na₂O₂ reduces to NaO

Mass % to Empirical Formula

- Approach:
 - 1. Assume 100 g of substance.
 - 2. Convert mass of each element to moles.
 - 3. Compute mole ratios.
 - 4. If necessary, convert to smallest whole number ratios by dividing by smallest number moles.

Mass % to Empirical Formula

Example:

- Compound is 74.88% C and 25.12 % H
- 1. In 100 g sample, 74.88 g C, 25.12 g H
- 2. 6.23 moles C, 24.92 moles H
- 3. Ratio of 24.92 mol H to 6.23 mol C
- 4. Reduces to 4 moles H:1 mole C
- 5. Empirical formula of CH₄

Practice: Empirical Formulas

- For thousands of years the mineral chalcocite has been a highly prized source of copper. Its chemical composition is 79.85% Cu and 20.15% S. What is its empirical
 - formula?
 - Collect and Organize:
 - Analyze:
 - Solve:
 - Think about It:

Chapter Outline

- 7.1 Chemical Reactions and the Conservation of Mass
- 7.2 Balancing Chemical Equations
- 7.3 Combustion Reactions
- 7.4 Stoichiometric Calculations and the Carbon Cycle
- 7.5 Percent Composition and Empirical Formulas
- 7.6 Empirical and Molecular Formulas
- 7.7 Combustion Analysis
- 7.8 Limiting Reagents and Percent Yield

Empirical vs. Molecular Formulas

- Empirical Formula:
 - Simplest whole-number molar ratio of elements in a compound
- Molecular Formula:
 - Actual molar ratio of elements in a compound
 - Equal to whole # multiple of empirical formula
 - Need empirical formula <u>and</u> molecular mass.
 - Both C₂H₂ and C₆H₆ have the same empirical formula, CH
 - Glucose: empirical formula = CH_2O

molecular formula = $(CH_2O) \times 6 = C_6H_{12}O_6$

Empirical vs. Molecular Formulas

- Glycoaldehyde (60.05 g/mol):
 - Elemental analysis
 - = 40.00% C, 6.71% H, 53.28% O
 - Mole ratios
 - C:H:O = 3.33 : 6.66 : 3.33, which simplifies to 1:2:1
 - Empirical formula = CH_2O (30.02 g?)
 - Molecular formula = $CH_2O \times 2 = C_2H_4O_2$

Practice: Empirical to Molecular Formula

Asbestos was used for years as an insulating material in buildings until prolonged exposure to asbestos was demonstrated to cause lung cancer. Asbestos is a mineral containing magnesium, silicon, oxygen, and hydrogen. One form of asbestos, chrysotile (520.27 g/mol), has the composition 28.03% magnesium, 21.60% silicon, 1.16% hydrogen. Determine the molecular formula of chrysotile.

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

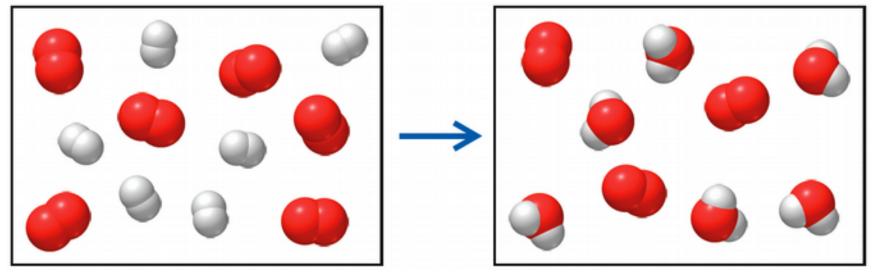
Chapter Outline

- 7.1 Chemical Reactions and the Conservation of Mass
- 7.2 Balancing Chemical Equations
- 7.3 Combustion Reactions
- 7.4 Stoichiometric Calculations and the Carbon Cycle
- 7.5 Percent Composition and Empirical Formulas
- 7.6 Empirical and Molecular Formulas
- 7.7 Combustion Analysis
- 7.8 Limiting Reagents and Percent Yield

Combustion Analysis

- The % of C and H in C_aH_b determined from the mass of H₂O and CO₂ produced by combustion:
 - $C_aH_b + excess O_2 \rightarrow {}^aCO_2(g) + \overline{}_2H_2O$ Furnace Stream of O2-H₂O absorber CO₂ absorber $[Mg(ClO_4)_2]$ (NaOH) Sample

Combustion analysis of an unknown compound indicated that it is 92.23% C and 7.82% H. The mass spectrum indicated the molar mass is 78 g/mol. What is the molecular formula of this unknown compound?


- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

- 7.1 Chemical Reactions and the Conservation of Mass
- 7.2 Balancing Chemical Equations
- 7.3 Combustion Reactions
- 7.4 Stoichiometric Calculations and the Carbon Cycle
- 7.5 Percent Composition and Empirical Formulas
- 7.6 Empirical and Molecular Formulas
- 7.7 Combustion Analysis
- 7.8 Limiting Reagents and Percent Yield

Limiting Reactant

Hydrogen and Oxygen react to form water: $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

 $H_2(g)$ = white; $O_2(g)$ = red. Which runs out first?

Limiting Reactant

- Limiting Reactant:
 - Substance that is completely consumed in the chemical reaction
 - Determines the amount of product that can be formed during the reaction
 - Identified by:
 - # of moles of reactants
 - Stoichiometry of balanced chemical equation

Limiting Reactants

- $SO_3(g) + H_2O(g) \rightarrow H_2SO_4(I)$
- How much product is obtained from reaction of 20.00 g SO₃ and 10.00 g H₂O?
- Find limiting reactant:
 - SO₃: 20.00 g/(80.06 g/mol) = 0.2498 moles
 - H_2O : 10.00 g/(18.02 g/mol) = 0.5549 moles
- Stoichiometry: need 1 mol SO₃: 1 mol H₂O
- Limiting reactant = SO₃

If 10.0 g of calcium hydroxide are reacted with 10.0 g of carbon dioxide to produce calcium bicarbonate:

- a. What is the limiting reactant?
- b. How many grams of calcium bicarbonate will be produced?
- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Percent Yield

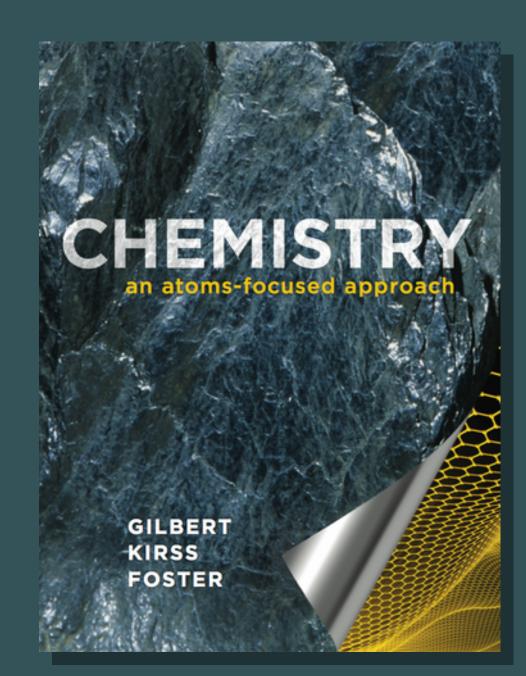
• Theoretical Yield:

The maximum amount of product possible in a chemical reaction for given quantities of reactants

• Actual Yield:

The measured amount of product formed

Percent Yield = <u>Actual Yield</u> x 100% Theoretical Yield


Aluminum burns in bromine liquid, producing aluminum bromide. In one experiment, 6.0 g of aluminum reacted with an excess of bromine to yield 50.3 g aluminum bromide. Calculate the theoretical and percent yields.

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

This concludes the Lecture PowerPoint presentation for Chapter 7

CHEMISTRY an atoms-focused approach

> GILBERT KIRSS FOSTER

© 2014 W. W. Norton Co., Inc.