CHEMSTRY Gilbert An atoms-focused approach Foster

Chapter

Atoms, Ions, and Molecules The Building Blocks of Matter

Chapter Outline

2.1 The Rutherford Model of Atomic Structure

- 2.2 Nuclides and Their Symbols
- 2.3 Navigating the Periodic Table
- 2.4 The Masses of Atoms, Ions, and Molecules
- 2.5 Moles and Molar Mass
- 2.6 Making Elements
- 2.7 Artificial Nuclides

- J. J. Thomson (1897)
 - Beam from cathode ray tube was deflected toward positively charged plate
 - Atoms contain negatively charged particles with a constant mass-to-charge ratio

Electrons

Robert Millikan (1909)

 Determined the mass and charge of an electron with his oil-droplet experiment

•
$$e^{-} = -1.602 \times 10^{-19} \text{ C}$$

• $m_e = 9.109 \times 10^{-28} \,\mathrm{g}$

Thomson's Plum-Pudding Model

- Plum-Pudding Model:
 - e⁻ distributed throughout diffuse, positively charged sphere

- Henri Becquerel (1896)
 - Some materials produce invisible radiation, consisting of charged particles
- Radioactivity
 - Spontaneous emission of high-energy radiation and particles
 - Beta particles (β, high-energy electrons)
 - Alpha particles (α, +2 charge, mass = He nucleus)

Rutherford's Nuclear Model

• Rutherford's Experiment:

 Bombarded a thin gold foil with α particles to test Thomson's model of the atom Particles deflected by

Rutherford's Experiment

b) Expected results from "plum-pudding" model.

- The Nucleus:
 - Positively charged center of an atom, containing nearly all of the atom's mass
 - About 1/10,000 the size of the atom
 - Consists of two types of particles
 - Proton: Positively charged subatomic particle
 - Number defines the element
 - Neutron: Electrically neutral subatomic particle

Electrons:

- Negatively charged particles
- Roughly 2000 times smaller mass than protons
- Located outside of the nucleus in orbitals or "electron clouds"
- Outer electrons define the radius of the atom.
- Electrons, and the nucleus, are much smaller than the atom itself, so most of the atom is empty space

• lons:

- Atoms are electrically neutral
 - This means that they have the same number of electrons as protons
- Ions are formed when atoms gain or lose electrons (which are negatively charged)
 - Cations have lost electrons, so have a positive charge
 - Anions have gained electrons, so have a negative charge

Nucleus: Protons (+ charge) plus neutrons (neutral)

Atomic Mass Units

- Atomic Mass Units (amu)
 - Unit used to express the relative masses of atoms and subatomic particles
 - Equal to 1/12 of a carbon atom:
 - 6 protons + 6 neutrons = 12 amu
 - 1 amu = 1 dalton (Da)

Subatomic Particles

TABLE 2.1 P	roperties of	Subatomic	Particles
-------------	--------------	-----------	-----------

Particle	Symbol	Mass (amu)	Mass Number	Mass (kg)	Charge (relative value)	Charge (C)
Neutron	$^{1}_{0}n$	1.00867	1	$1.67493 imes 10^{-27}$	0	0
Proton	¹ ₁ p	1.00728	1	$1.67262 imes 10^{-27}$	1+	$+1.602 imes 10^{-19}$
Electron	$^{0}_{-1}e \text{ or } ^{0}_{-1}\beta$	$5.485799 imes 10^{-4}$	0	$9.10938 imes 10^{-31}$	1-	$-1.602 imes 10^{-19}$

Chapter Outline

2.1 The Rutherford Model of Atomic Structure

2.2 Nuclides and Their Symbols

- 2.3 Navigating the Periodic Table
- 2.4 The Masses of Atoms, Ions, and Molecules
- 2.5 Moles and Molar Mass
- 2.6 Making Elements
- 2.7 Artificial Nuclides

Isotopes: Experimental Evidence

- Positive Ray Analyzer Results:
 - Two different kinds of neon gas atoms existed
 - 90% = 20 amu
 - 10% = 22 amu
 - Aston proposed theory of "isotopes"
- Isotopes: Atoms of an element containing the same # of protons but different # of neutrons
- Nuclide: A specific isotope of an element

Atomic Mass (A) = total number of "nucleons" (protons, neutrons) in the nucleus

Elemental Symbol = a one- or two-letter symbol to identify the type of atom

Atomic Number (Z) = the number of protons in the nucleus; determines the identity of the element

Symbols of Nuclides

- Z = atomic # = # of protons = p
- A = mass # = p + n
- Isotopes are denoted using the chemical symbol, X, or the element name:

$$_{z}^{A}X = ^{A}X = X - A = element name - A$$

So a carbon isotope with 6 neutrons could be written as:

$$_{6}^{12}C = {}^{12}C = C - 12 = Carbon - 12$$

Practice: Isotopic Symbols

 Use the format ^AX to write the symbol for the nuclides having 28 protons and 31 neutrons

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Practice: Identifying Atoms and Ions

Complete the missing information in the table.

Symbol	²³ Na	?	?	?
Number of Protons	?	39	?	79
Number of Neutrons	?	50	?	?
Number of Electrons	?	?	50	?
Mass Number	?	?	118	197

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

- 2.1 The Rutherford Model of Atomic Structure
- 2.2 Nuclides and Their Symbols
- 2.3 Navigating the Periodic Table
- 2.4 The Masses of Atoms, Ions, and Molecules
- 2.5 Moles and Molar Mass
- 2.6 Making Elements
- 2.7 Artificial Nuclides

Mendeleev's Periodic Table

Dmitri Mendeleev (1872)

- Ordered elements by atomic mass
- Arranged elements in columns based on similar chemical and physical properties

•	Left open spaces in the
	table for elements not yet
	discovered

Fi	ig	ur	е	2	9
	\mathbf{U}				

		Grou	p Nu	mbe	r —			->	•			
		I	п	ш	IV	v	VI	VII	VIII			
Row	1	${}^1_{\mathbf{H}}$										
	2	7 Li	9.4 Be	11 B	12 C	14 N	16 O	19 F				
	3	23 Na	24 Mg	27.3 Al	28 Si	31 P	32 S	35.5 Cl		56	59	59
¥	4	39 K	40 Ca	44 ?	48 Ti	51 V	52 Cr	55 Mn		Fe	Co	Ni
	5	63 Cu	65 Zn	68 ?	72 ?	75 As	78 Se	80 Br		104	104	106
	6	85 Rb	87 Sr	88 ?Yt	90 Zr	94 Nb	96 Mo	100 ?		Ru	Rh	Pd
	7	108 Ag	112 Cd	113 In	118 Sn	122 Sb	125 Te	127 J				
	8	133 Cs	137 Ba	138 ?Di	140 ?Ce							
	9											
	10			178 ?Er	180 ?La	182 Ta	184 W			195	197	198
	11	199 Au	200 Hg	204 T1	207 РЬ	208 Bi				Os	Ir	Pt
	12				231 Th		240 U					

The Modern Periodic Table

- Also based on a classification of elements in terms of their physical and chemical properties.
- Horizontal rows: Called periods (1 → 7) Columns: Contain elements of the same family or group (1 → 18)
- Several groups have names as well as numbers.

Group 1: Alkali metals
Group 2: Alkaline earth metals
Group 17: Halogens
Group 18: Noble gases

		1																	18
	1	1 H	2											13	14	15	16	17	2 He
	2	3 Li	4 - Be-	—At —Sy	omic mbol	num for e	ber lemei	nt						5 B	6 C	7 N	8 0	9 F	10 Ne
	3	11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
Period	4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	6	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
	7	87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo

6	Lanthanides	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
7	Actinides	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

1					Copyright C	The McGrav	v-Hill Compa	nies, Inc. Per	mission requ	ired for repro	duction or dis	splay.				
IA																
1 H	2				24 - Cr		Atomic n	umber				12	14	15	16	17
1.008	2A				52.00		Atomic n	ass				3A	4A	5A	6A	7A
3 Li	4 Be											5 B	6 C	7 N	8	9 F
6.941	9.012											10.81	12.01	14.01	16.00	19.00
11 No	12											13	14	15 B	16	17
22.99	24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	26.98	28.09	30.97	32.07	35.45
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
к 39.10	Ca 40.08	Sc 44.96	11 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	58.93	Ni 58.69	63.55	Zn 65.39	Ga 69.72	Ge 72.61	As 74.92	Se 78.96	Br 79.90
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
Rb 85.47	Sr 87.62	¥ 88.91	Zr 91.22	Nb 92.91	Mo 95.94	Te (98)	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	Cd 112.4	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	I 126.9
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85
Cs 132.9	Ba 137.3	La 138.9	Hf 178.5	Ta 180.9	W 183.9	Re 186.2	Os 190.2	Ir 192.2	Pt 195.1	Au 197.0	Hg 200.6	Tl 204.4	РЬ 207.2	Bi 209.0	Po (210)	At (210)
87	88	89	104	105	106	107	108	109	110	111	112	(113)	(114)	(115)	(116)	(117)
Fr (223)	Ra (226)	Ac (227)	Rf (261)	Db (262)	Sg (266)	Bh (264)	Hs (269)	Mt (268)								

Metals	58	59	60	61	62	63	64	65	66	67	68	69	70
Metalloids	Ce 140.1	Pr 140.9	Nd 144.2	Pm (145)	Sm 150.4	Eu 152.0	Gd 157.3	ТЬ 158.9	Dy 162.5	Ho 164.9	Er 167.3	Tm 168.9	Үь 173.0
Nonmetals	90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)

 Main group elements (representative elements)
Transition metals

Broad Categories of Elements

- Metals (left side and bottom of the table)
 - Shiny solids; conduct heat and electricity; are malleable and ductile
- Nonmetals (right side and top of the table)
 - Solids (brittle), liquids and gases; nonconductors
- Metalloids (between metals/nonmetals)
 - Shiny solids (like metals); brittle (like nonmetals); semiconductors

Chapter Outline

- 2.1 The Rutherford Model of Atomic Structure
- 2.2 Nuclides and Their Symbols
- 2.3 Navigating the Periodic Table
- 2.4 The Masses of Atoms, Ions, and Molecules
- 2.5 Moles and Molar Mass
- 2.6 Making Elements
- 2.7 Artificial Nuclides

Most of the mass of an atom is in the nucleus, but the actual atomic mass is not exactly the sum of the masses of the nucleons (p + n).

- The electrons do have a small mass.
- Some mass is lost in the energy binding nucleons together ($E = m c^2$)

The periodic table shows the average atomic masses, in amu.

These masses are the weighted averages of the masses of all of the naturally occurring isotopes.

Average Atomic Mass

- Average Atomic Mass:
 - Weighted average of masses of all isotopes of an element
 - Calculated by multiplying the natural percent abundance of each isotope by its mass in amu and then summing these products
- Natural Abundance:
 - Proportion of a particular isotope, usually expressed as a percentage, relative to all the isotopes for that element in a natural sample
 - Assumes the same percentages over the surface of the Earth

Average atomic mass = sum over all isotopes of the mass of each isotope times its fractional abundance (percentage/100):

Avg. at. mass =
$$\Sigma \frac{(atomic mass)(percent abundance)}{100\%}$$

where "Σ" means to sum over all isotopes present

Neon is found in three isotopes in nature.

Isotope	Mass (amu)	Natural Abundance (%)
Neon-20	19.9924	90.4838
Neon-21	20.9940	0.2696
Neon-22	21.9914	9.2465

Average atomic mass of neon:

(19.9924 × 0.904838) + (20.99395 × 0.002696) + (21.9914 × 0.092465) = 20.1797 amu

Lithium has two naturally occurring isotopes: Li-6 6.015 amu 7.42 % abundance Li-7 7.016 amu 92.58% abundance

So, for a standard sample of lithium:

avg. at. mass =

$$\frac{(6.015 \text{ amu})(7.42\%)}{100\%} + \frac{(7.016 \text{ amu})(92.58\%)}{100\%}$$

= 0.446 amu + 6.50 amu = 6.94 amu

Chapter Outline

- 2.1 The Rutherford Model of Atomic Structure
- 2.2 Nuclides and Their Symbols
- 2.3 Navigating the Periodic Table
- 2.4 The Masses of Atoms, Ions, and Molecules
- 2.5 Moles and Molar Mass
- 2.6 Making Elements
- 2.7 Artificial Nuclides

- A"mole" is a unit for a specific number:
 - 1 dozen items = 12 items
 - 1 mole particles = 6.022 × 10²³ particles (also known as Avogadro's number)
- Exactly 12 grams of carbon-12 will contain exactly 1 mole of atoms
- Convenient unit for expressing macroscopic quantities (atoms or molecules) involved in macroscopic processes we observe

Moles as Conversion Factor

 To convert between number of particles and an equivalent number of moles

To convert between moles and numbers: Use the conversion factor: 1 mole = 6.022E23

For example:

 $1.204E24 atoms \left(\frac{1 \, mole \, atoms}{6.022E23 \, atoms}\right) = 2.000 \, moles \, atoms$

 $2.50 moles atoms \left(\frac{6.022 E23 atoms}{1 mole atoms}\right) = 1.506 E24 atoms$

Moles as Conversion Factor

$$1.5 mole molecules (\frac{6.022E23 molecules}{1 mole molecules}) = 9.03E23 molecules$$

$$1.5 mole H_2 O(\frac{6.022 E23 H_2 O}{1 mole H_2 O}) = 9.03 E23 H_2 O(molecules)$$

$$3.01E23 H_2 O\left(\frac{1 \text{ mole } H_2 O}{6.022E23 H_2 O}\right) = 0.500 \text{ mole } H_2 O$$

Molar Mass

- Molar Mass:
 - The mass (in grams) of one mole of the substance (atom, molecule or formula unit)
 - 1 atom of He = 4.003 amu
 - Mass of 1 mole of He atoms = 4.003 g
 - The molar mass (\mathcal{M}) of He is 4.003 g/mol

Molar Mass

- Molar Mass:
 - The mass (in grams) of one mole of the substance (atom, molecule or formula unit)
- The molar mass (\mathcal{M}) of He is 4.003 g/mol
- The average mass on PT gives:
 - mass, in amu, of one atom of the element
 - 1 atom of He = 4.003 amu He
 - mass, in grams, of one mole of atoms of the element
 - 1 mole of He atoms = 4.003 g He

To find the moles of hydrogen atoms in 1.01 grams of H:

$$1.01 g H(\frac{1 mole H}{1.01 g H}) = 1.00 mole H$$

or for 12.5 grams of hydrogen atoms:

$$12.5 g H(\frac{1 mole H}{1.01 g H}) = 12.4 mole H$$

Or to find the mass of 2.5 moles of helium:

$$2.5 moles He\left(\frac{4.00 g He}{1 mole He}\right) = 10. g He$$

or for 2.5 moles of lead:

$$2.5 moles Pb\left(\frac{207.20 g Pb}{1 mole Pb}\right) = 518.0 g Pb$$

Note these two examples have the same number of atoms, but different masses

Molecular Mass/Formula Mass

- Molecular Mass:
 - Mass of one molecule of a molecular compound
 - Sum of the atomic masses of the atoms in that compound
 - Example: For one molecule of CO₂
 - $CO_2 = C + 2O$ = 12.01 amu + 2(16.00 amu)
 - = 44.01 amu/molecule
- Formula Mass:
 - Mass in atomic mass units of one formula unit of an ionic compound (e.g., NaCl)

So, to find the mass of 1.5 moles of CO_2 :

$$1.5 \,moles \, CO_2 \left(\frac{44.01 \, g \, CO_2}{1 \, mole \, CO_2}\right) = 66.02 \, g \, CO_2$$

or to find the moles of molecules of 85.0 grams of CO_2 :

$$85.0 \, g \, CO_2 \left(\frac{1 \, mole \, CO_2}{44.01 \, g \, CO_2}\right) = 1.93 \, mole \, CO_2$$

Moles, Mass, and Particles

Moles, Mass, and Particles

Practice: Mole Calculations #1

- a) How many moles of K atoms are present in 19.5 g of potassium?
- b) How many formula units are present in 5.32 moles of baking soda (NaHCO₃)?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

How many moles are present in 58.4 g of chalk $(CaCO_3)$?

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

The uranium used in nuclear fuel exists in nature in several minerals. Calculate how many moles of uranium are found in 100.0 grams of carnotite, $K_2(UO_2)_2(VO_4)_2 \cdot 3H_2O$.

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

Chapter Outline

- 2.1 The Rutherford Model of Atomic Structure
- 2.2 Nuclides and Their Symbols
- 2.3 Navigating the Periodic Table
- 2.4 The Masses of Atoms, Ions, and Molecules
- 2.5 Moles and Molar Mass
- 2.6 Making Elements
- 2.7 Artificial Nuclides

Big Bang Theory

H and He atoms in stars fuse to form heavier elements.

Subatomic particles fuse to form H and He nuclei.

Existence of subatomic particles.

Nucleosynthesis

- Nucleosynthesis:
 - Energy from Big Bang transformed into matter (more details of this matter/energy relationship in Chapter 21)
 - Fusing of fundamental/subatomic particles (protons/neutrons) created atomic nuclei

$${}^{1}_{1}p + {}^{1}_{0}n \rightarrow {}^{2}_{1}d$$
$$2{}^{2}_{1}d \rightarrow {}^{4}_{2}\alpha$$

Nuclear Binding Energies

- The stability of a nucleus is proportional to its binding energy (BE)
 - $E = (\Delta m)c^2$
 - Δm = mass defect of the nucleus (in kg).
 - $c = \text{speed of light} (2.998 \times 10^8 \text{ m/s}^2)$
- Mass defect (∆m) difference between the mass of the stable nucleus and the masses of the individual nucleons that compose it.

Stability of Nuclei

- Stability: Proportional to BE/# of nucleons
- ⁵⁶Fe = most stable nucleus

Stellar Nucleosynthesis

 High density and temperature in stars caused additional fusion reactions to create elements heavier than H, He:

$$3 {}_{2}^{4} \alpha \rightarrow {}_{6}^{12} C$$
$${}_{6}^{12} C + {}_{2}^{4} \alpha \rightarrow {}_{8}^{16} O$$

 Stellar core forms shells of heavier elements produced from fusion of lighter elements

- Alpha Decay: Nuclear reaction in which an unstable nuclide spontaneously emits an alpha particle
 - α particle = He nucleus
- Example: $_{238}_{92}$ U $\longrightarrow _{90}^{234}$ Th + $_{2}^{4}\alpha$

- Beta Decay: Spontaneous ejection of a β -particle (electron) by a neutron-rich nucleus ${}_{0}^{1}n \longrightarrow {}_{1}^{1}p + {}_{-1}^{0}e$
- Example: ${}^{14}_{6}C \longrightarrow {}^{14}_{7}N + \beta$
- (Note: mass and charge balance!)

Chapter Outline

- 2.1 The Rutherford Model of Atomic Structure
- 2.2 Nuclides and Their Symbols
- 2.3 Navigating the Periodic Table
- 2.4 The Masses of Atoms, Ions, and Molecules
- 2.5 Moles and Molar Mass
- 2.6 Making Elements
- 2.7 Artificial Nuclides

Practice: Decay Equation

- Collect and Organize:
- Analyze:
- Solve:
- Think about It:

ChemTours: Chapter 2

© 2014 W. W. Norton Co., Inc.

This concludes the Lecture PowerPoint presentation for Chapter 2

GILBERT KIRSS FOSTER

© 2014 W. W. Norton Co., Inc.