| PHYS 201 | 11AM | Fall 2014 | Test #2 | Name:_ | KEY | | |--|--|--|--|---|---|-------------------------------------| | 42 A. For the | MC question | ns write you | r answers in th | e line next t | to the quest | ion number. | | a. Every part b. An object by an outside c. The net for acceleration d. When one that has an e | ticle in the ur
t will remain in
the net force.
Orce acting on
of the object
the object exerts
equal magnitu | iverse exerts in a state of re an object is e a force on a de but opposi | equals to the prosecond object, to | rce on every i motion in a oduct of the r the second of | other particles straight line on the contract of | e unless acted on | | € 2. Which | ch one of the | following obi | ects has the gre | atest inertia? | | | | a. Penny | b. book | c. bicy | | | Supertanke | r | | $\frac{\text{Ql}}{\text{a. kg.m}^2/\text{s}^2}$ 3. Which | ch one of the b. kg/(m.s | following is a s^2) c. kg.r | also the unit joul
m/s ² d. kg. | le, J?
m ² /s ³ e. | kg.m/s ³ | f. kg.m/s | | reads 175 N. a. It is at rest b. It is movin c. It is movin d. It is accele | What can be | said about the
stant velocity
stant velocity | e motion of the upward | elevator? | | levator. The scale | | 5-6) Newton | 's Law of Gra | vitation is gi | ven below: | $F = G \frac{M}{r}$ | $\frac{\times m}{r^2}; G = 6$ | $6.67 \times 10^{-11} (SI)$. | | $\frac{2}{a. \text{ N.m}^2/\text{s}^2}$ | are the SI un
b. N.kg²/n | its for G, grav
1 ² c. kg.n | vitational constant of the o | ant? $m^2/s^2 \qquad e.$ | $N.m^2/kg^2$ | | | weight on the and the other a. 1 7. Whice a. Dr. c. kir | b. 2 th one of the forag force metic frictiona | iformly district. 3 | your earth-weig
buted.
d. 4
non-contact for
b. static frictio
d. normal force | ht. Assume t
e.
ce?
nal force
e | hat the mass | arth's radius. Your es of the earth | | e. ter 8. A per work done or a. Positive | son is riding o | y the gravitat | f. gravitational neel. When the vional force is | | one comple | te turn, the net | \bigcirc 9. Two cars are traveling at the same constant speed v. Car A is moving along a straight section of the road, while B is rounding a circular turn. Which statement is true about the acceleration of the cars? - a. The acceleration of both cars is zero, since they are traveling at a constant speed. - b. Car A is accelerating, but car B is not accelerating. - c. Car A is not accelerating, but car B is accelerating. - d. Both cars are accelerating. - 10. What is the centripetal force for a real plane when it turns in the air? - a. Tension - b. Weight - c. Component of the lift force - d. Frictional force - e. Gravity - a. A force is conservative when the work it does on a moving object is independent of the path between the object's initial and final positions. - b. A force is conservative when it does a net work on an object moving around a closed path, starting and finishing at the same point. - c. A force is conservative when the work it does on a moving object is dependent of the path between the object's initial and final positions. - 12-14) A net external force is applied to a 55.0-kg object that is initially at rest by means of a motor. The net force component along the displacement of the object varies with the magnitude of the displacement as shown in the drawing. - 2 12. What is the maximum net external force applied? - a. 0 N - b. 10 N - c. 200 N - d. 300 N - e. 400 N - 2 13. How much work is done by the motor in moving the object from 0 to 10.0 m? - a. 4000 J b. 600 J - c. 1200 J - d. 1600 J - e. 2800 J - d 14. What is the speed of the object after the above force is applied? - a. 102 m/s - b. 58.2 m/s - c. 12.1 m/s - d. 10.1 m/s - e. 7.63 m/s B. A 35-kg box is pulled along a horizontal surface at a constant velocity. The pulling force has a magnitude of 80.0 N, which is applied at a 30° angle as shown below. Frictional force is also present. 6 1. Show all the forces acting on the box. 2. Resolve the 80-N force into horizontal and vertical components, in the diagram. 3. What is the magnitude of the normal force acting on the box? $$2\vec{F} = M\vec{A}$$ $F_N + 808in 30 = My = 35 \times 9.8$ $F_N = 35 \times 9.8 - 808in 30$ $F_N = 35 \times 9.8 - 808in 30$ $F_N = 303 N$ 5. What is the coefficient of kinetic friction between the box and surface? $$\frac{4}{4} = \frac{4}{4} = \frac{69.3}{30.3} = \frac{0.2.3}{30.3}$$ C. A volleyball is spiked so that its incoming velocity of +4.0 m/s is changed to an outgoing velocity of -17 m/s. The mass of the volleyball is 0.35 kg. If the ball is in contact with the hand for 0.20m seconds, what is the magnitude of the average force the Method 2: $$V_0 = 4 \text{ m/s}$$ $V = -17 \text{ m/s}$ $V = -105 \text{ m/s}$ contact with the hand for 0.2000 seconds, what is the magnitude of the disconding player applied to the ball? $\frac{4m}{5} = \frac{4m}{5} = \frac{4m}{5}$ $\frac{4m}{5} = \frac{4m}{5} \frac{4m}$ 3|Page D. A "swing" ride at a carnival consists of chairs that are swung in a circle by 12.0-m cables attached to a vertical rotating pole, as the drawing shows. Suppose the total mass of a chair and its occupant is m (= 65 kg) and the tension in the cable is T. Show the forces acting on the chair and its occupant. - 1. Calculate the radius of the circle swung. - 2. Determine the tension in the main cable. - 3. Find the speed of the chair. 2. $$T = 65 = mg = 65 \times 9.8$$ $T = \frac{65 \times 9.8}{\cos 65} = 1507 \text{ N}$ 3. $$T \sin 65' = \frac{mv^2}{v}$$ $V = \frac{YT \sin 65'}{m} = \frac{10.9 \times 1507 \times \sin 65}{65} = 229.07 \longrightarrow U = 15.1 \text{ m}$ E. A car with a mass of 850-kg and a speed of 16 m/s approaches an intersection as shown. A 1200-kg minious traveling at 21 m/s is heading for the same intersection. The car and minious collide and stick together. 1. What type is this collision? Completely Inclustre 2. Using the conservation of momentum, find the speed (\mathbf{v}_f) and direction (θ) of the wreckage just after the collision, assuming external forces can ignored. Conservation of Momentum 850× 16 = (1200+850) y lost — (1200×21 = (1200+850) y sind — (1200×21 = $$\frac{1200\times21}{850\times16}$$ = $\frac{1200\times21}{850\times16}$ = $\frac{1200\times21}{(1200+850)}$ $\frac{1200\times21}$