PHYS 201 001 Sims 209 Fall 2014

Test #1

Name: Kery

A. Select the correct answer for the following multiple choice questions and write your answer in the line next to the question number. (Each question is worth 3 points)

C 1. Today, the standard second is defined using the

atomic clock.

- a. Irridium
- b. Rubidium
- c. Cesium
- d. Platinum
- e. Radium
- f. Quartz

<u>d</u> 2. Speeding tickets are issued using the,

- a. average speed
- b. average velocity
- c. average acceleration

- d. instantaneous speed
- e. instantaneous velocity
- f. instantaneous acceleration

 $\underline{\mathcal{C}}$ 3. The slope of the position *versus* time graph gives,

- a. time
- b. displacement
- c. acceleration
- d. position
- e. velocity

<u>A</u>. For the motion described in the graph, decide whether the moving object is

- a) accelerating
- b) decelerating or
- c) moving at a constant velocity.

- a. 1>2>3
- b. 2>3>1
- c. 3>2>1
- d. All tie (1=2=3)

b 6. A plane is diving as shown below with a velocity of 120 m/s at an angle of 15° below horizontal.

What is the vertical component of the plane's velocity?

- a. 31 m/s, up
- b. 31 m/s, down
- c. 116 m/s, up
- d. 116 m/s, down

_____7. A meteoroid is speeding through the atmosphere, traveling east at 18 km/s while descending at

- 12 km/s. What is its speed, in km/s?
- a. 18 km/s
- b. 12 km/s
- c. 22 km/s
- c. 468 km/s

- 8-13) Deal with the one-dimensional motion of an object, which is graphed below, where $v_s = 4 \text{ m/s}$.
- 8. What is the time interval at which the object decelerates?
- a. (0-2) s
- b. (2-10) s
- c. (10-12) s
- d. (12-16) s
- 2. What is the instantaneous velocity of the object at 4 s?
- a. 0 m/s
- b. 1 m/s
- c. 2 m/s
- d. 3 m/s
- e. 4 m/s
- _____10. What is the instantaneous velocity of the object at 12 s?
- a. 0 m/s
- b. 1 m/s
- c. 2 m/s
- d. 3 m/s
- e. 4 m/s
- $\frac{O_{c}}{1.0 \text{ m/s}^2}$ 11. What is the instantaneous acceleration of the object at 4 s? b. 0.5 m/s² c. 1.0 m/s² d. 10 m/s² e. 25 m.

- e. 25 m/s^2

- 12. What is the instantaneous acceleration of the object at 1 s? m/s^2 b. $0.5 m/s^2$ c. $1.0 m/s^2$ d. $2.0 m/s^2$ e. $4.0 m/s^2$
- 13. Approximately how far the object travels during the first 2 seconds?
- a. 1 m
- b. 2 m
- c. 4 m
- d. 8 m
- e. 20 m
- 14-15) A car traveling at 95 km/h overtakes a 1.10 km long train traveling in the same direction on a track parallel to the road. The velocity of the train is 75 km/h, eastward.

- C 14. What is the velocity of the car relative to the train?
- a. 95 km/h eastward
- b. 75 km/h eastward
- c. 20 km/h eastward

- d. 170 km/h eastward
- e. 20 km/h westward
- 215. How long does it take the car to pass the train?
- a. 0.055 min b. 0.39 min
- c. 0.69 min
- d. 0.88 min
- e. 3.3 min
- 16. Which one of the following is a scalar?
- a. Distance
- b. Displacement
- c. Velocity
- d. Force
- e. Weight

B. Equations of kinematics are given below: (Acceleration due to gravity = 9.8 m/s², down)

1.	2.	3.	4.
$v = v_0 + at$	$x = \frac{1}{2}(v + v_0)t$	$x = v_0 t + \frac{1}{2} a t^2$	$v^2 = v_0^2 + 2ax$

1. Derive the third equation using the first two, starting with 2nd equation.

- 2. The brakes on your automobile are capable of creating a deceleration of 4.9 m/s². If you are going 39 m/s and suddenly see a state trooper,
- a. what is the minimum time in which you can get your car under the 26 m/s speed limit?
- b. How far you travel during this time?

a.
$$V_{0} = \frac{39 \text{ m/s}}{39 \text{ N}}$$
 $V = 26 \text{ m/s}$
 $A = -4.9 \text{ m/s}$
 $A = -4.9$

3. A speeding motorist passes a stopped police car. At the moment the car passes, the police car starts from rest with a constant acceleration of 3.3 m/s². The speeding motorist continues with the constant speed until caught by the police car 15 s later. How fast is the speeding car going?

Police car:
$$V_0=0$$
 $a=3.3\,\text{m/s}$
 $t=15\text{S}$
 $x=V_0t+\frac{1}{2}\text{ at}$
 $x=V_0t+\frac{1}{2}\text{ at}$

- 4. A basketball is shot with an initial velocity of 8.0 m/s and launch angle of 40°, which follows the trajectory shown. The ball enters the basket 0.92 s after it is launched.
- a. What are the horizontal and vertical components of the initial velocity?
- b. What are the distances *x* and *y*?

a.
$$V_{0x} = V_{0} los 46 = 8 los 46 = 6.1 \text{ m/s}$$
 $V_{0y} = V_{0} 8 in 40 = 8 sin 40 = 5.1 \text{ m/s}$
 $V_{0x} = 6.1 \text{ m/s}$
 $t = 0.92 \text{ s}$
 $a_{x} = 0$
 $x = V_{0x}t + \frac{1}{2}at^{2}$
 $x = 6.1 \times 0.92 + 0$
 $x = 5.6 \text{ m}$
 $x = 5.6 \text{ m}$
 $y = V_{0y}$
 $y = V_{0y}$
 $y = V_{0y}$
 $y = V_{0y}$