| | | | | | | mm . 114 | |---------|--------|-----|-----|------|------|----------| | PHYS 20 | 11 002 | Kin | 315 | Fall | 2014 | Test #1 | Name: KEY A. Select the correct answer for the following multiple choice questions and write your answer in the line next to the question number. (Each question is worth 3 points) - C 1. Today, the standard kilogram is defined in terms of - 1 2. Today, the standard meter is defined in terms of Answers for 1 & 2 - a. the distance from the earth's equator to the north pole - b. the electromagnetic waves emitted by cesium atoms - c. a standard platinum-iridium cylinder - d. the speed of light - e. the speed of sound 3. What does a car speedometer measure? 4. What does a car odometer measure? Answers for 3 & 4 - a. average velocity - b. average speed - c. distance - d. instantaneous speed - e. instantaneous velocity - f. displacement \angle 5. What is the angle between the vectors **A** and -**A** when they are drawn from a common origin? c. 180^0 d. 270^0 - a. 0^{0} - b. 90^0 6. Acceleration is the rate at which_____ changes. - a. distance - b. displacement - c. speed - d. velocity - e. time 2. The slope of the position versus time graph gives, - a. time - b. displacement - c. acceleration - d. position - e. velocity 8. The drawing shows projectile motion at three points along the trajectory. The speeds at the points are v_1 , v_2 , and v_3 . Assume there is no air resistance and rank the speeds, largest to smallest. b. $$v_2 > v_3 > v_1$$ c. $$v_3 > v_1 > v_2$$ d. $$v_1 > v_3 > v_2$$ e. $$v_2 > v_1 > v_3$$ 2 9. Car A is traveling east at 60 MPH. Car B is traveling west at 50 MPH. What is the velocity of car A relative to car B? a. 60 MPH, east d. 110 MPH, west - b. 50 MPH, west - e. 10 MPH, east - c. 110 MPH, east - f. 10 MPH, west 10-14) Deal with the one-dimensional motion of an object, which is graphed below. Copyright © 2005 Pearson Prentice Half, Inc. - 10. The above graph is, - a. time *versus* velocity - b. velocity versus time - Let 11. What is the instantaneous velocity of the object at 20 s? - b. 20 m/s - c. 25 m/s - d. 30 m/s - e. 38 m/s - 12. What is the instantaneous acceleration of the object at 20 s? 12. 12. 12. 13. 13. 13. 14. 14. 15. 1 - 2 13. Approximately how far the object travels during the first 100 seconds? - b. 100 m - c. 1000 m - d. 1500 m - e. 2000 m - b 14. What is happening to the acceleration from 110 to 120 s? - a. increasing b. decreasing c. stay the same - b 15. A plane is diving as shown below with a velocity of 120 m/s at an angle of 150 below horizontal. What is the vertical component of the plane's velocity? - a. 31 m/s, up - b. 31 m/s, down - c. 116 m/s, up - d. 116 m/s, down - b 16. Which one of the following is a vector? - a. Distance - b. Displacement - c. Speed - d. Time - e. Mass B. Equations of Kinematics for constant acceleration are given below: | 1. | 2. | 3. | 4. | |----------------|-----------------------------|-------------------------------|---------------------| | $v = v_0 + at$ | $x = \frac{1}{2}(v + v_0)t$ | $x = v_0 t + \frac{1}{2}at^2$ | $v^2 = v_0^2 + 2ax$ | 1. Derive the third equation using the first two, starting with 2nd equation. 2. An astronaut on a distant planet wants to determine its acceleration due to gravity. The astronaut throws a rock straight up with a velocity of +14.0 m/s and measures a time of 27.6 s before the rock returns to his hand. What is the acceleration due to gravity on this planet? 3. A car is traveling at 20.0 m/s, and the driver sees a traffic light turn red. After 0.530 s (the reaction time), the driver applies the brakes, and the car decelerates at 7.00 m/s^2 . What is the stopping distance of the car, as measured from the point where the driver first sees the red light? - 4. A basketball is shot with an initial velocity 8.0 m/s at a launch angle of 40° , which follows the trajectory shown. The ball enters the basket 0.92 s after it is launched. - a. Find the components of the initial velocity, V_{ox} and V_{oy} . - b. Find the distances x and y? (Acceleration due to gravity = 9.8 m/s^2 , down) $$0: V_{0x} = V_{0} \log 46 = 8 \log 46 = 6.1 \text{ m/s}$$ $V_{0y} = V_{0} \sin 46 = 8 \sin 46 = 5.1 \text{ m/s}$ $V_{0x} = 6.1 \text{ m/s}$ $V_{0x} = 6.1 \text{ m/s}$ $V_{0y} = 5.1 V_{0y