\qquad
Quiz 5 - Take-Home - Due by start of class on Wed., Oct. 16, 2019
You may use your textbook and your lecture notes. You may NOT seek help from other people.
Useful Information: $\mathrm{PV}=\mathrm{nRT} \quad \mathrm{R}=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad \mathrm{P}_{\mathrm{A}}=\chi_{\mathrm{A}} \mathrm{P}_{\text {total }} \quad \chi_{\mathrm{A}}=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\text {total }}}$ $\overline{\mathrm{E}_{\mathrm{K}}}=\frac{3}{2} \mathrm{RT} \quad \mathrm{v}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}} \quad 1 \mathrm{~L}=1000 \mathrm{~cm}^{3}=0.001 \mathrm{~m}^{3} \quad 1 \mathrm{~atm}=760 \mathrm{Torr}=760 \mathrm{~mm} \mathrm{Hg}$

1. Suppose that you perform a chemical reaction that produces toxic hydrogen cyanide (HCN) gas, which you collect in a sealed 1.5-L flask and allow to cool to room temperature.
a. If the pressure of HCN in the flask is 215 Torr at $22.5^{\circ} \mathrm{C}$, how many milligrams of HCN does the flask contain?
b. Suppose that the flask breaks, releasing all of the HCN into the (enclosed) room. If the room volume is $75 \mathrm{~m}^{3}$, what is the new gas pressure?
c. Due to the risk of thyroid, blood, and respiratory effects, the National Institute for Occupational Safety and Health (NIOSH) has established a recommended exposure limit for HCN of $5 \frac{\mathrm{mg}}{\mathrm{m}^{3}}$. Would your exposure exceed this limit? (Be sure to show your work.)
2. Suppose that you fill a tire with air to a pressure of 36.7 psi (pounds per square inch; $1 \mathrm{~atm}=14.70 \mathrm{psi}$) when the temperature is $22.1^{\circ} \mathrm{C}$.
a. Nitrogen $\left(\mathrm{N}_{2}\right)$, oxygen $\left(\mathrm{O}_{2}\right)$ and argon (Ar) are the most prevalent gases in air. If the mole fraction of N_{2} in the mixture is 0.79 , what is the partial pressure of N_{2} in the tire?
b. How do the average kinetic energies of the nitrogen and oxygen molecules compare? Explain in a few words.
c. Which of the three gases in the mixture has particles moving at the fastest average speed, nitrogen, oxygen, or argon? Explain briefly.
(Lots of extra space here!)
