Quiz 5 – Take-Home – Due by start of class on Wed., Oct. 16, 2019

You may use your textbook and your lecture notes. You may NOT seek help from other people.

Useful Information: PV = nRT

$$R = 0.08206 \ \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}} \quad P_A = \chi_A P_{total} \quad \chi_A = \frac{n_A}{n_{total}}$$

$$\overline{E_K} = \frac{3}{2}R^2$$

$$v_{rms} = \sqrt{\frac{3RT}{M}}$$

$$1 L = 1000 \text{ cm}^3 = 0.001 \text{ m}^3$$

$$\overline{E_K} = \frac{3}{2}RT$$
 $v_{rms} = \sqrt{\frac{3RT}{M}}$ $1 L = 1000 \text{ cm}^3 = 0.001 \text{ m}^3$ $1 \text{ atm} = 760 \text{ Torr} = 760 \text{ mm Hg}$

- 1. Suppose that you perform a chemical reaction that produces toxic hydrogen cyanide (HCN) gas, which you collect in a sealed 1.5-L flask and allow to cool to room temperature.
 - a. If the pressure of HCN in the flask is 215 Torr at 22.5 °C, how many milligrams of HCN does the flask contain?

b. Suppose that the flask breaks, releasing all of the HCN into the (enclosed) room. If the room volume is 75 m³, what is the new gas pressure?

c. Due to the risk of thyroid, blood, and respiratory effects, the National Institute for Occupational Safety and Health (NIOSH) has established a recommended exposure limit for HCN of 5 $\frac{\text{mg}}{\text{m}^3}$. Would your exposure exceed this limit? (Be sure to show your work.)

2.	Suppose that you fill a tire with air to a pressure of 36.7 psi (pounds per square inch; 1 atm = 14.70 psi) when the temperature is 22.1 °C.	
	a.	Nitrogen (N_2) , oxygen (O_2) and argon (Ar) are the most prevalent gases in air. If the mole fraction of N_2 in the mixture is 0.79, what is the partial pressure of N_2 in the tire?
	b.	How do the average kinetic energies of the nitrogen and oxygen molecules compare? Explain in a few words.
	2	Which of the three cases in the mixture has partiales moving at the featest average great nitrogen
	c.	Which of the three gases in the mixture has particles moving at the fastest average speed , nitrogen, oxygen, or argon? Explain briefly.
(Lots of extra space here!)		