Problem Set 6 – Due by 5 p.m. Monday, 12.2.19

Please answer the following questions on a separate sheet (or sheets) of paper. Be sure to show all your work.

- 1. Sodium hydroxide (commonly called lye) may be used as a drain cleaner. Suppose that you dissolve 5.00 g of sodium hydroxide pellets in enough water to make 2.0 L of solution. Please predict the solution pH.
- 2. Your muscles produce lactic acid, CH₃CH(OH)COOH ($K_a = 1.4 \times 10^{-4}$) during exercise.
 - a. Please write the equilibrium for this weak acid reacting with water. Label the acid, base, conjugate acid and conjugate base.
 - b. Please calculate the pH of a 0.075 M solution of lactic acid.
- 3. In 1999, a battery was designed based on the following cell reaction with a very high oxidation state of iron (nicknamed "super iron"):

$$2 K_2 FeO_4 (aq) + 3 Zn (s) \rightarrow Fe_2O_3 (s) + ZnO (s) + 2 K_2 ZnO_2 (aq)$$

- a. Determine the oxidation states for all transition-metal atoms and ions in the cell reaction.
- b. How many electrons are transferred in this reaction?
- 4. Acid spontaneously oxidizes iron metal to Fe²⁺ ions, according to the reaction below. Clearly, containers for long-term storage of acid should **not** be made of iron, since the solid iron would dissolve over time.

Fe (s) + 2 H⁺ (aq)
$$\rightarrow$$
 Fe²⁺ (aq) + H₂ (g)

- a. Write the two half-reactions involved in the process above and calculate the cell potential under standard conditions. How can you tell that the process is spontaneous?
- b. Which of the following metals could be used in place of iron to successfully store acidic solutions under standard conditions: copper, lead, nickel or tin? Include a calculation of E°cell and a few words to justify your answer.
- 5. Typical alkaline (zinc—manganese(II) oxide) batteries involve the following overall cell reaction:

$$Zn(s) + 2 MnO2(s) \rightarrow ZnO(s) + Mn2O3(s)$$

- a. Write and balance the oxidation and reduction half-reactions occurring in basic solution.
- b. Which half-reaction occurs at the anode and which occurs at the cathode of the battery?
- c. KOH acts as the electrolye here. Toward which electrode do the K+ ions flow?
- d. Refer to Appendix 6 to find the standard half-cell potentials for your half-reactions and calculate E°_{cell} and ΔG° for the overall process. Is it spontaneous under standard conditions?