EXAM I – Sept. 12, 2019

Name:

You will have until 10:50 to complete this exam. Please show all work and/or reasoning in the space provided or on the attached scratch page. Partial credit for incorrect answers may only be awarded if work/reasoning is shown. Remember to report the final results of your calculations with the appropriate significant figures. A Periodic Table and a page of helpful information are provided for your use. GOOD LUCK!!

- 1. (6 pts) Please indicate whether each statement below is **True** (**T**) or **False** (**F**).
 - a. A sample of an element may contain either atoms or molecules.
 - _____ b. NaCl is a pure substance.
 - c. Anions have more protons than electrons.
- 2. (5 pts) What does it mean to say that energy is *quantized*? Why do we **not** notice this in our everyday lives?
- 3. (6 pts) For each question below, **please circle** the atom or ion that has the specified property.
 - a. Smallest radius: W, Sb, or Fr
 - b. Greatest electron affinity: W, Sb, or Fr
 - c. Smallest radius: Xe, Cs⁺, or Te²⁻
- 4. (12 pts) For each atom or ion below, please give:
 - a. the ground-state (lowest energy) **electron configuration**. You may choose to abbreviate the noble gas core.
 - b. the **orbital "box" diagram** corresponding to your configuration. Be sure to label orbitals clearly.

Tellurium

Pr

Pr²⁺ (configuration only; no "box" diagram)

5. (6 pts) Please write the **complete chemical symbol** for the **rhenium atom or ion** with 112 neutrons and 73 electrons.

- 6. (4 pts) What name is given to the decimal values listed under the elements on the Periodic Table (for example, 6.941 under Li)? <u>Briefly</u> explain how these values are calculated.
- 7. (12 pts) The following questions relate to *first ionization energy*.
 - a. Please **define** first ionization energy. **Include a chemical equation for ionization of silicon** to illustrate your definition.
 - b. Fill in the blank: Moving from left to right across a period of the Periodic Table, first ionization energy ______ (*increases, decreases*, or *stays the same*).
 - c. Briefly explain your answer to part (b). <u>Why</u> is this the trend?
 - d. **Fill in the blank:** Moving from top to bottom within a group of the Periodic Table, first ionization energy *(increases, decreases, or stays the same).*
 - e. Briefly explain your answer to part (d). <u>Why</u> is this the trend?

- 8. (14 pts) The following questions relate to quantum numbers and orbitals:
 - a. How many orbitals are there in the n = 3 shell? Please <u>list each orbital by name</u>.
 - b. Please give the **atomic number** of the first element that would contain electrons in an **8s orbital**. Also, **which subshell** would be filled next, after the 8s?
 - c. Please sketch a d_{yz} orbital on the axes below. Be sure to **label the axes** appropriately; also, use shading to indicate **regions of different sign** and dashed lines to show the location(s) of any **node(s)**.

- 9. (12 pts) Niels Bohr is credited with advancing our understanding of atomic emission spectroscopy and electronic structure. Please answer each of the following questions **as briefly (but completely) as possible.**
 - Bohr proposed a theory explaining the cause for the hydrogen emission lines observed by other scientists.
 What specific events did Bohr suggest were responsible? <u>Include a diagram and one or more equations</u> (but no calculations) in support of your answer.

- b. Briefly list the one major success of Bohr's model. (What did Bohr get right that we still use today?)
- c. Briefly list one **significant limitation** of Bohr's model. (About what was he incorrect? Or, what could his model **not** explain?)
- 10. (14 pts) You may have heard about the lead-contaminated drinking water in Flint, Michigan. In 2015, researchers from Virginia Tech measured lead-contaminated water in over 200 Flint homes. In the worst case they found, the lead concentration was as high as 13.2 g/m³ (which is more than 2500 times the threshold level deemed unsafe for drinking). Suppose that the homeowner drank 64 ounces (oz) of this highly contaminated water per day. How many grams of lead would she ingest in a year (assuming she lived that long)?

Note: 1 L = 33.814 oz = 1000 cm³

11. (14 pts) As I've mentioned in class, a technique called photoelectron spectroscopy uses the photoelectric effect to experimentally determine orbital energies and, from them, electron configurations. This is done by bombarding atoms with high-energy photons and measuring the speeds at which electrons are ejected: from the measured speeds one can calculate the binding energies with which the electrons had been held in their atoms (allowing for determination of which subshells the electrons had occupied).

Suppose that you bombard an aluminum surface with X-rays 850.0 pm in wavelength and measure the speed of some ejected (2*p*) electrons to be 2.17×10^7 m/s.

a. What is the energy of each X-ray photon?

b. Given the measured speed of the ejected electrons (2.17×10^7 m/s), with what binding energy were these 2p electrons bound to the Al nuclei (until the instant of ejection)? The mass of an electron is 9.10938×10^{-31} kg.

[**Hint:** Which quantity in your equation for the photoelectric effect corresponds to the binding energy – the amount of energy holding the electron in the atom?]

BLANK SCRATCH PAGE

If there is material to be graded here, make sure that it is clearly labeled and write your <u>name on this page.</u>

Useful Constants, Conversion Factors and Equations

Constants and conversion factors:

h =
$$6.626 \times 10^{-34}$$
 J·s
 c = 2.9979×10^8 m/s
 1 J = $1 \frac{\text{kg} * \text{m}^2}{\text{s}^2}$

Equations:

 $d = \frac{m}{V}$ $v = \frac{c}{\lambda}$

$$\frac{c}{\lambda}$$
 $E_{photon} = hv$

 E_K (ejected electron) = E_{photon} - ϕ

$$E_{K} = \frac{1}{2}mv^{2}$$

$$\Delta E = -2.18 \times 10^{-18} J \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \qquad \qquad E_{\text{photon}} = \left| \Delta E \right|$$

 $\lambda_{matter} = \frac{h}{mv}$

						-			24.625.5					8.9		19			1					
	(18 8A ·	2 He 4.00260	10 Ne	20.1797	18 Ar	39.948	36	N 02 60	00.00	54	131 20	C#11CT	86 R n	(222)				71	Lu	174.967	103	Lr	(260)
			17 7A	9 F	8.998403	CI 4	35.453	35	DI	19.904	- 23	176 0015	C#06'071	85 A+	(210)				02	Ab Vb	173.04	102	No	(259)
	Main groups —		16 6A	∞ 0	15.9994 1	29 29	32.066	34	Sec	78.90	22 -	107.60	12/.00	84 0	(909)	100-1	Uuh		07	Tm	168.9342	101	Md	(258)
			15 5A	۲Z	14.0067	15 P	30.97376	33	AS	74.9216	12 23	50 101 FET	/6/.171	83 D:	DI DI	1000000			07	Fr	167.26	100	Fm	(257)
			14 4A	0 e	12.011	14 Si	28.0855	32	Ge	72.61	20	Sn	118.710	82	0.7 J	7.107	Uuq		Ľ	Ho	164.9304	66	Es	(252)
			13 3A	15 B	10.81	13 Al	26.98154	31	Ga	69.72	49	ul .	114.82	18 1	11	COC.#U2				00 Dv	162.50	98	Cf	(251)
					(12	2B	30	Zn	65.39	48	Cd	112.41	80	Hg	60.002	Uub Uub			۶Ę	158.9254	67	Bk	(247)
						11	1B	29	Cu	63.546	47	Ag	107.8682	79	Au	C006.061	111 Uuu	-		49 C	157.25	96	Cm	(247)
						10	(28	iz	58.69	46	Pd	106.42	78	Pt 	195.08	110 Uun			63 E	151.96	95	Am	(243)
					S	6	8B	27	Co	58.9332	45	Rh	102.9055	77	Ir	192.22	109 Mt	(266)		62	150.36	0.4	Pu	(244)
					n metal	00		26	Fe	55.847	44	Ru	101.07	76	Os	190.2	108 Hs	(265)		61	(145)	02	aN	237 048
					ansitior	2	7B	25	Mn	54.9380	43	Tc	(86)	75	Re	186.207	107 Bh	(262)		09	144.74	00	n N	738 0789
					Tr	9	6B	24	Cr	51.996	42	Mo	95.94	74	M	183.85	106 Sg	(263)		59	110 0077	100COLT	Pa	721 0350
						ſ	5B	23		50.9415	41	qN	92.9064	73	Ta	180.9479	105 Db	(262)		28	14017	71.021	n Tr	111 1
						Ą	4B	22	Ξ	47.88	40	Zr	91.224	72	Hf	178.49	104 Rf	(261)						
							3B	21	Sc	44.9559	39	X	88.9059	57	*La	138.9055	⁸⁹ †Ac	227.0278		*Lanthanide series			inide series	
	in	4	2 2 2	4	be	12	1MB 24 305	00	Ca	40.078	38	Sr	87.62	56	Ba	137.33	88 Ra	226.0254						
	Ma	1	1 H H	3.	L1 6 0/1	11 11	Na 77 08077	11000.77	X	39.0983	37	Rb	85.4678	55	Cs	132.9054	87 Fr	(223)				tAct		'ACI
			-																					