
EXAM III – Oct. 31, 2019

You may work until 10:50 to complete this exam. Please show all work in the space provided or on the attached scratch page. Remember to report your final answers with the correct number of significant figures, as appropriate. A Periodic Table, a table of thermodynamic data, and a sheet of helpful constants, conversion factors and equations are provided for your use. GOOD LUCK!!

1. (11 pts) Dr. Hanna and I are working with our research students to design and evaluate compounds to prevent a protein-aggregation process involved in Alzheimer's disease. Two compounds made by a Winthrop chemistry student are shown below. Note that (1) **they differ only in the presence of O-CH₃ versus O-H groups** and (2) that **lone pairs are not shown**.

- a. Choose either one of the structures above and show how this compound engages in **hydrogen bonding with water** molecules. Be sure to clearly show the atoms involved in these interactions.
- b. One of the two compounds shown dissolves in water much more readily than the other. Which one do you think is more soluble in water and how can this be explained on the basis of intermolecular forces?

 (36 pts) The U.S. produces approximately 2.6 billion gallons of methanol (CH₃OH) each year. It is used in fuels, as a solvent for perfumes and dyes, and in the preparation of a wide range of other chemicals – formaldehyde, plastics, paints, explosives, etc. A common preparation method involves reacting carbon monoxide and hydrogen gas as shown below:

$$CO(g) + 2 H_2(g) \rightarrow CH_3OH(g)$$

The following questions are related to this reaction (or these substances). **Note that your answer to each part is independent of the others.**

Problem 2, continued: CO (g) + 2 H₂ (g) \rightarrow CH₃OH (g)

a. (8 pts) Which of the two reactants do you expect to have the **higher molar entropy** at 25 °C? **Briefly explain** your choice, being sure to specifically discuss **intermolecular forces** <u>and</u> at least one other factor influencing molecular entropy.

- b. (4 pts) Suppose that you react 1 mole of CO with 2 moles of H₂. Which reactant has the greater **partial pressure**? How do you know?
- c. (4 pts) If all three gases are present in a mixture at 25 °C, which molecules are moving at the **fastest average speed**? How do you know?
- d. (10 pts) Using the thermodynamic data provided (p. 5), please calculate ΔH° for this reaction in kJ per mole of CH₃OH formed. Is the reaction endothermic or exothermic?

e. (10 pts) Suppose that an engineer in a chemical plant performs this reaction in a 1500.0liter stainless steel vat at 25.0 °C and determines the pressure of methanol to be 25.4 atm. **How many moles** of CH₃OH were formed? 3. (24 pts) The questions below relate to the following reaction:

$$P_4O_{10}(s) + 6 PCI_5(g) \rightarrow 10 CI_3PO(g) \Delta H_{rxn} = ???$$

a. Please use the thermodynamic data below to **determine** ΔH_{rxn} for this process.

$P_4 (s) + 6 Cl_2 (g) \rightarrow 4 PCl_3 (g)$	∆H = -1225.6 kJ
$P_4 \left(s \right) \ + \ 5 \ O_2 \left(g \right) \ \rightarrow \ P_4 O_{10} \left(s \right)$	∆H = -2967.3 kJ
$PCI_3(g) + CI_2(g) \rightarrow PCI_5(g)$	∆H = -84.2 kJ
$PCI_3(g) + \frac{1}{2} O_2(g) \rightarrow CI_3PO(g)$	∆H = -285.7 kJ

b. How much heat is absorbed or released when 50.0 g of PCI₅ reacts completely?

4. (22 pts) The over-the-counter remedy called "milk of magnesia" contains magnesium hydroxide, which neutralizes hydrochloric acid in the stomach. Suppose that you carry out the following reaction in a coffee-cup calorimeter to determine the heat flow involved:

 $2 \text{ HCl } (aq) + \text{Mg(OH)}_2 (aq) \rightarrow \text{MgCl}_2 (aq) + 2 \text{ H}_2 O (l)$

You add 250.0 mL of 4.00 M HCl to enough Mg(OH)₂ to make 500.0 total grams of solution. Initially, you measure a temperature of 23.6 °C; after reaction is complete, the temperature is 50.3 °C. Calculate Δ H_{rxn} in kJ per mole of MgCl₂ formed. The specific heat of solution 4.18 J/g °C. [**Hint:** Start by calculating the heat of reaction.]

5. (12 pts) Another important industrial process is the production of lime (a.k.a. calcium oxide, CaO) from limestone (calcium carbonate, CaCO₃); the US produces approximately 20 million metric tons per year. Under typical industrial conditions, $\Delta H_{rxn} = +178$ kJ for this process.

 $CaCO_3 (s) \rightarrow CaO (s) + CO_2 (g)$ $\Delta H = +178 \text{ kJ}$

- a. Please predict the sign of ΔS for this reaction. Briefly explain your reasoning. [Note: <u>No</u> <u>calculations</u> are needed here.]
- b. Under what temperature conditions do you expect this process to be spontaneous? (Choose from: No T, Low T, High T, or All T). Explain your reasoning. You should refer to a mathematical equation in your answer, but you need not calculate anything.

Thermodynamic Data:

Substance	<u>∆H</u> ° _f <u>(kJ/mol)</u>
CH3OH (<i>g</i>) CO (<i>g</i>) H2 (<i>g</i>)	-201.0 -110.5 0

BLANK SCRATCH AREA BELOW

If there is material to be graded here, make sure that it is clearly labeled, and that your name is written on top of this page.

Constants, Conversion Factors and Equations

Constants and Conversion Factors:

$h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$	$c = 2.9979 \times 10^8 \frac{\text{m}}{\text{s}}$	$1 J = 1 \frac{kg \cdot m^2}{s^2}$
$N_{\rm A} = 6.022 \times 10^{23}$	$R = 0.08206 \frac{L*atm}{mol*K}$	1 cal = 4.184 J = 1×10^{-3} Cal

1 atm = 760 Torr = 760 mm Hg = 1.013 bar

Equations:

$$d = \frac{m}{V}$$

$$v = \frac{c}{\lambda}$$

$$E_{\text{photon}} = hv$$

 $E_{\rm K}$ (ejected electron) = $E_{\rm photon}$ - ϕ

 $\Delta E = -2.18 \times 10^{-18} J \left(\frac{1}{n_{\rm f}^2} - \frac{1}{n_{\rm i}^2} \right) \qquad \qquad E_{\rm photon} = |\Delta E|$

 $\lambda_{\text{matter}} = \frac{h}{m \mathbf{v}}$

- $M_{\rm i}V_{\rm i} = M_{\rm f}V_{\rm f}$
- PV = nRTPM = dRT $P_A = \chi_A P_{total}$ $\chi_A = \frac{n_A}{n_{total}}$ $E_K = \frac{1}{2}mv^2$ $\overline{E_K} = \frac{3}{2}RT$ $v_{rms} = \sqrt{\frac{3RT}{M}}$ $\Delta G = \Delta H T\Delta S$ $\Delta S^\circ_{rxn} = \Sigma[nS^\circ_m (products)] \Sigma[nS^\circ_m (reactants)]$ (similar for ΔG°_f , ΔH°_f)

$$q = mC_{\rm s}\Delta T$$
 $q_{\rm rxn} = -q_{\rm soln}$ $\Delta H = q_{\rm P}$

- Main groups -

		1000						<u></u>					_			7										
	¹⁸ 8A	2 He	10	Ne	20.1797	18 Ar	39.948	36	IN 00 CO	00.00	54	121 20	67.101	86 R n	(000)	(777)				12	I II	17A 067	1/4.70/	103	L	(260)
		17 7A		r H	8.998403	C 4	35.453	35	Br	19.304	53	1.00 001E	C+06.071	85 A+	1010)	(017)			7	70	2	100.01	1/3.04	102	No	(259)
		16 6A		~ 0	1	2% S	32.066	34	Se Se	06.8/	1 22	1 e	12/.60	84 Do	100	(607)	116		TON NOT	60	e L	1111	168.9342	101	Md	(258)
)		15 7 A		~Z	14.0067	15 P	30.97376	33	As	74.9216	21	00	767.121	83 9 :83	10	208.9804	and a state			07	8 4		167.26	100	Fm	(257)
		14 4 A	T T	<u>،</u> ں	12.011	14 Si	28.0855	32	Ge	72.61	20	nu	118.710	82	10	207.2	114	hnn		Ę	/0	011	164.9304	66	Es	(757)
		13 3∆		ده م <u>ا</u>	10.81	13 A1	26.98154	31	Ga	69.72	49	ц	114.82	81	11	204.383					90	'n	162.50	98	С,	(121)
/			L		(12	2B	30	Zn	65.39	48	Ca	112.41	80	нg	200.59	112	Oup			3 F	10	158.9254	67	Bk	1000
						11	1B	29	Cu	63.546	47	Ag	107.8682	64	Au	196.9665	111	Uuu	-		⁴⁹ (Ca	157.25	96	Cm	1
						10		28	Ni	58.69	46	Pd	106.42	78	Ŀ	195.08	110	Uun			63	Eu	151.96	95	Am	
					0	0	- 8B	27	Co	58.9332	45	Rh	102.9055	77	I	192.22	109	Mt	(266)		62	Sm	150.36	94	Pu	
					n metal	0	0	26	Fe	55.847	44	Ru	101.07	76	Os	190.2	108	Hs	(265)		61	Pm	(145)	93	aN	-
				•	Transition metals	1	78	25	Mn	54.9380	43	Tc	(86)	75	Re	186.207	107	Bh	(262)		09	Nd	144.24	92	D	
	r F	Tra	9	6B	24	C	51.996		Mo	95.94	74	M	183.85	106	Sa	(263)		59	Pr	140.9077	91	Pa				
						L	5B	23		50.9415	41	qN	92.9064	73	Ta	180.9479	105	Db	(262)		58	Ce	140.12	00	Th	
							4B	22	Ξ	47.88	40	Zr	91.224	72	Hf	178.49	104	Rf	(261)							
							3B	16	Sc	44.9559	39	Y	88.9059	57	*La	138.9055	68.	[†] Ac	227.0278		*Lanthanide series				ries	
/sd		7	2A	4 ¢	be	12	Mg 24 305	00	Ca	~	-	Sr	87.62	56	Ba	137.33	88	Ra	226.0254				[†] Actinide series		IIIIUC DUIII	
groups	1	H H	1.00794	6.	L1 6 941	11	Na Di 08077	11001.77	X	39 0983	37	Rb	85.4678	55	Cs	132.9054	87	Fr	(223)	CONTRACT OF	tActi					

Main