Constants and Conversion Factors:

$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$c=2.9979 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$1 \mathrm{~J}=1 \frac{\mathrm{~kg} * \mathrm{~m}^{2}}{\mathrm{~s}^{2}}$
$N_{\mathrm{A}}=6.022 \times 10^{23}$
$R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}=8.31451 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
$1 \mathrm{cal}=4.184 \mathrm{~J}=1 \times 10^{-3} \mathrm{Cal}$
$1 \mathrm{~atm}=760 \mathrm{Torr}=101.3 \mathrm{kPa}=1.013 \mathrm{bar}$

Equations:

$d=\frac{m}{\mathrm{~V}}$
$v=\frac{c}{\lambda}$
$E_{\text {photon }}=h \nu$
$E_{\mathrm{K}}($ ejected electron $)=E_{\text {photon }}-\phi$
$E_{K}=\frac{1}{2} m v^{2}$
$\Delta E=-2.18 \times 10^{-18} \mathrm{~J}\left(\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}\right) \quad \quad E_{\text {photon }}=|\Delta E|$
$\lambda_{\text {matter }}=\frac{h}{m \mathrm{v}}$
$\mathrm{M}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}=\mathrm{M}_{\mathrm{f}} \mathrm{V}_{\mathrm{f}}$
$\mathrm{PV}=\mathrm{nRT}$
$\mathrm{PM}=\mathrm{dRT} \quad \mathrm{P}_{\mathrm{A}}=\chi_{\mathrm{A}} \mathrm{P}_{\text {total }}$
$\chi_{\mathrm{A}}=\frac{\mathrm{n}_{\mathrm{A}}}{\mathrm{n}_{\text {total }}}$
$\mathrm{E}_{\mathrm{K}}=\frac{1}{2} \mathrm{mv}^{2}$
$\overline{\mathrm{E}_{\mathrm{K}}}=\frac{3}{2} \mathrm{RT}$
$\mathrm{v}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}$
$\mathrm{q}=\mathrm{mC}_{\mathrm{s}} \Delta \mathrm{T}$
$q_{\text {rxn }}=-q_{\text {soln }}$
$\Delta H=q_{P}$
$\Delta G=\Delta H-T \Delta S$
$\Delta \mathrm{S}^{\circ}{ }_{\mathrm{rxn}}=\Sigma\left[\mathrm{nS}^{\circ}{ }_{m}\right.$ (products) $]-\Sigma\left[\mathrm{nS}^{\circ}{ }_{m}\right.$ (reactants)] (similar for $\Delta \mathrm{G}^{\circ}, \Delta \mathrm{H}^{\circ}$)
$\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT}(\ln \mathrm{Q})$
$\Delta \mathrm{G}^{\circ}=-\mathrm{RT}(\ln \mathrm{K})$
$k=A e^{\frac{-E a}{R T}} \quad$ First order: $\ln [\mathrm{A}]_{\mathrm{t}}=-\mathrm{kt}+\ln [\mathrm{A}]_{0} \quad t_{1 / 2}=\frac{0.693}{k}$
Second order: $\frac{1}{[A]_{t}}=k t+\frac{1}{[A]_{0}}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $\mathrm{pH}+\mathrm{pOH}=\mathrm{pK} \mathrm{w}^{(\mathrm{pK}}=14.00$ at $\left.25^{\circ} \mathrm{C}\right)$
$K_{a} \times K_{b}=K_{w}$

