Carp Muscle Calcium-binding Protein

II. STRUCTURE DETERMINATION AND GENERAL DESCRIPTION*

(Received for publication, October 30, 1972)

Robert H. Kretsinger \ddagger and Clive E. Nockolds§
From the Department of Biology, University of Virginia, Charlottesville, Virginia 22901

Abstract

SUMMARY The structure of crystalline carp muscle calcium-binding protein (parvalbumin) has been determined by x-ray diffraction techniques to nominal $1.85-\mathrm{A}$ resolution. Isomorphous and anomalous scattering data were measured for three heavy atom derivatives, 3 -chloromercuri-2-methoxypropyl urea, mercury bromide, and ethyl mercury chloride, to $2.0-\mathrm{A}$ resolution using precession photography. As described in Paper III in this series the 2.0 -A phases were refined and the $2.0-$ to $1.85-\mathrm{A}$ phases were determined by use of the tangent formula.

The electron density map is interpreted in terms of the 108 amino acid sequence described in Paper I in this series. A calcium ion is bound in the loop between helix C and helix D and a second calcium is bound in the EF loop. The entire CD region is related to helix E, the EF loop, and the terminal helix F by an approximate intramolecular 2 -fold axis. Although it does not bind calcium the AB region has a structure similar to the CD and EF regions and appears to have resulted from a gene triplication.

The molecule is generally spherical with a well defined hydrophobic core, one-seventh of its total volume, composed of side chains of phenylalanine, isoleucine, leucine, and valine. All of the polar side chains are at the surface except those associated with calcium binding and with an invariant internal salt bridge between arginine-75 and glutamic acid-81.

In the first paper of this series Coffee and Bradshaw (1) describe the determination of the amino acid sequence of carp muscle calcium-binding protein component B . They also discuss the general characteristics of the molecule. In this second paper we describe the solution of the three-dimensional structure

[^0]by means of x-ray diffraction. The structure is discussed in terms of its assumed role in muscle contraction and in terms of its apparent evolution via gene triplication (2). In the final paper by Hendrickson and Karle (3) the tangent formula refinement and extension of phases is described.

EXPERIMENTAL PROCEDURES

Preparation of Muscle Calcium-binding Protein-All of the protein used in these studies came from one preparation made in the summer of 1968 (4). The steps through Sephadex G-75 chromatography were based on the procedure of Pechère and Focant (5). Fillets, free of skin, from $500-\mathrm{g}$ carp (Cyprinus carpio) were homogenized. The homogenate was centrifuged 30 min in a Sorvall GS-3 rotor at $9,000 \mathrm{rpm}(9,300$ to $14,700 \times$ g). The lipid film on the surface was aspirated off. The supernatant was dialyzed in preboiled Visking tubing ($40 / 32$ inches) for 3 days against five changes of water. The dialysate was centrifuged and the substantial pink precipitate discarded. Although muscle calcium-binding protein is found only in "white" muscle (6) we did not dissect away the superficial median strip of "red" muscle rich in myoglobin. Solid ammonium sulfate, 530 g per liter original volume, was slowly added with stirring over 24 hours to the solution of albumins. The red precipitate was discarded and the supernatant was brought to saturation with ammonium sulfate and stirred for 24 hours. The pH was maintained between 6.0 and 8.0 with phosphate. All of these procedures were performed in a 4° cold room. The 75 to 100% saturated cut was dissolved and dialyzed against Tris- HCl buffer, $\mathrm{pH} 7.3,5 \mathrm{~mm}$. The low (1.4 S) and high (7.05 S) molecular weight albumins were well resolved on Sephadex G-75 chromatography.

Hamoir et al. $(6,7)$ identified by moving boundary electrophoresis three main low molecular weight components in carp myogen. We separated these components by DE-32 diethylaminoethyl cellulose chromatography at pH 7.0 , in 2 mm phosphate, with a 0.0 to 0.5 m KCl linear gradient. The three components can be resolved and identified by electrophoresis on acrylamide gels (4). Recently Pechère et al. (8) have described a DE-11 preparation using a piperazine buffer and a NaCl elution gradient. We find this method to give higher resolution and to be more reproducible. They found that a single carp contained five components having the following isoelectric points: $5 a, 4.47 ; 5 b, 4.37 ; 9,4.25 ; 2,3.95$; and $1,<3.9$ (8). Gerday and Bhushana Rao (9) also isolated the first four and have called them IVa, IVb, III, and II. To be consistent with our original
(4) notation we call $5 a$ and $5 b$ (which are not resolvable on acrylamide gel electrophoresis) $\mathrm{A}, 3$ is B , and 2 is C .

Jebsen and Hamoir (10) found that, per 100 g of fresh muscle, the total protein content is about 16 g and that the content of muscle albumin (myogen) is 2.0 g for plaice and 2.7 g for carp. Focant and Pechère (11) explored the phylogenetic distribution of the low molecular weight components, as defined by Sephadex G-75 chromatography. Reptiles, birds, and mammals have none, while the content of the low molecular weight component, which consists solely of muscle calcium-binding protein or "parvalbumins" (12), ranges from 15% in amphibia to 28% in teleost fish. Our yield for the sum of the three fractions was somewhat less than the predicted $700 \mathrm{mg} / 100 \mathrm{~g}$ of fresh muscle. This is hardly surprising, since we were exploring preparative techniques.

Crystallization and Heavy Atom Derivatives-We initially chose to work with Component B because it gave the best crystals $(4,7)$. We were never able to obtain large crystals of Components A or C . Both lyophilized protein and frozen solutions were used. Subsequently we have failed to grow usable crystals from other fish, pike, hake and Tilapia, and from frog. We took no special precautions either to add or to remove calcium. Only after the data collection was completed did we realize that the protein binds calcium (8). Flame absorption spectrophotometry ${ }^{1}$ performed on some of the crystals actually used for data collection gave a calcium to protein molar ratio of 0.75 (13). However, due to the very small amount of material actually available, this result could easily be in error by a factor of two. As will be discussed by Hendrickson and Karle (3), we feel that the crystals used for data collection had high calcium occupancy at both sites.

Although a wide variety of crystallization conditions were explored, we succeeded in growing crystals only from solutions of 70 to 85% saturated ammonium sulfate at pH 5 to 8 . Hoping that the various heavy atom compounds would be more soluble in phosphate, we transferred the crystals through several stages to 4.0 m phosphate, pH 6.8 . We never grew usable crystals directly from phosphate. As it turned out, the derivatives we finally chose to use would probably have bound as well in ammonium sulfate. The transfer to phosphate caused a slight change in unit cell dimensions, space group C 2 ,

$$
\begin{array}{rlrl}
\text { Sulfate: } \mathrm{a} & =28.7 \mathrm{~A} & \text { Phosphate }: \mathrm{a} & =28.2 \mathrm{~A} \\
\mathrm{~b} & =61.1 \mathrm{~A} & \mathrm{~b} & =61.0 \mathrm{~A} \\
\mathrm{c} & =54.5 \mathrm{~A} & \mathrm{c} & =54.3 \mathrm{~A} \\
\beta & =94^{\circ} 37^{\prime} & \beta & =95^{\circ} 10^{\prime}
\end{array}
$$

as cited in Reference 4. Subsequently we found that the angle, β, varied from $94^{\circ} 50^{\prime}$ to $95^{\circ} 10^{\prime}$ in the phosphate-soaked crystals. Standardizing the transfer conditions reduced this variability. In our calculations we have used $\beta=95^{\circ} 0^{\prime}$. None of the heavy atom derivatives used changed the unit cell dimensious by over 0.4%. Crystallization conditions were tested and crystals for use were grown by the microdiffusion technique (14). Possible heavy atom derivatives were screened by soaking four to six crystals in 0.5 ml of 4.0 m phosphate containing the heavy atom compound in concentrations of 0.5 to 5.0 mm . Crystals were soaked 10 to 30 days at room temperature. They were briefly washed in phosphate (free of heavy atoms) before being mounted in quartz capillaries and photographed.
In order to assure constant heavy atom occupancy for all of the crystals used in recording three-dimensional data for each

[^1]

Fig. 1. All difference Patterson syntheses are calculated with 2.0-A resolution data and are contoured at arbitrarily chosen, but equal, intervals. The map in the upper left is a projection difference Patterson for chloromercuri-2-methoxypropyl urea $(C M M P U)$ calculated with hol coefficients $[F \text { (nat) }-F(\text { CMMPU })]^{2}$ from the complete set of hkl data. The map in the middle of the upper row is the Harker section, $y=0$, calculated with complete three-dimensional data $[F \text { (nat) }-F(\mathrm{CMMPU})]^{2}$. The hol projection has a higher relative background. It shows translational symmetry due to the c face centering. The Harker section on the upper right illustrates the information content of the Bijovet pairs $[F+(\mathrm{CMMPU})-F-(\mathrm{CMMPU})]^{2}$. The three Harker sections on the bottom row $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HgCl}(E M C)\right.$, CMMPU, and HgBr) were calculated using as coefficients.

$$
\begin{gathered}
F^{2}(\text { nat })+F^{2}(\text { der })-2 \cdot F(\text { nat }) \cdot F(\text { der }) \\
{[1-K(F+(\text { der })-F-(\text { der })) / 2 \cdot F(\text { nat })]^{1 / 2}}
\end{gathered}
$$

(Ref. 36) with $K=5.0$. This formula combines heavy atom difference and anomalous dispersion information. The circles mark the positions of mercury self-vectors as calculated from least squares refinement coordinates. The crosses mark the positions of major site to minor site cross-vectors. These appear in the Harker section because, by coincidence, the two sites differ by only 0.8 A in y.
of the three derivatives, all the crystals for that particular derivative were soaked together in the same vial. The conditions were: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HgCl}, 0.8 \mathrm{~mm}, 4$ days; $\mathrm{HgBr}_{2}, 1.2 \mathrm{~mm}, 4$ days; and chloro-mercuri-2-methoxypropyI urea, $1.5 \mathrm{~mm}, 3$ days. These conditions had been judged to give maximum peak background ratios in the difference Patterson maps (Fig. 1).

Initially we processed data from only those films showing visible intensity changes relative to native films. Subsequently difference Patterson and difference Fourier syntheses were calculated for less promising derivatives. As summarized in Table I most of the compounds either did not bind to the protein or else bound to the sulfur atom of cysteine-18. Several of the compounds which did not show a significant reaction with the protein were soluble to less than 0.1 mm in phosphate and are indicated in Table I by $\left(<10^{-4}\right)$. A third group of compounds either distorted the unit cell or bound at several sites with very low occupancy.

We are now testing the ability of various lanthanide series compounds to replace calcium. The results will be described later.

Data Processing-Since most of the procedures involved have been well described and are becoming routine, we will emphasize only those aspects which are somewhat unique to the present problem. Much of this information is summarized in Tables II and III. The data-processing procedures and evaluations are

Table I
Heavy atom compounds

-SH site(s)	Disorder or weak	No reaction
$\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}-\mathrm{NHCONH}_{2}$	$\mathrm{K}_{2} \mathrm{HgI}_{4}$	KAuCl_{4}
HgBr_{2}	PbBr_{2}	NaWO_{4}
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HgCl}$	$\mathrm{K}_{2} \mathrm{PtCl}_{4}$	$\mathrm{ClHgC}_{6} \mathrm{H}_{4} \mathrm{OH}$
$\mathrm{CH}_{3} \mathrm{HgCl}$	ThCl_{4}	$\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{HgNO}_{3}$	AgNO_{3}	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{H}_{\mathrm{i}}\right)_{2}$	$\mathrm{UO}_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}$	$\mathrm{K}_{2} \mathrm{PtI}_{4}$
$\mathrm{Hg}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}$	$o-(\mathrm{OHHg}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}$	$\mathrm{H}_{2} \mathrm{PtCl}_{6}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{HgO}_{2} \mathrm{CCH}_{3}$	$p-\mathrm{ClHgC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$	IrCl_{3}
$p-\mathrm{ClHgC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$	$p-\mathrm{ClHgC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	$\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}$
	$\left(\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{CHO}) \mathrm{O}\right)_{3} \mathrm{Eu}$	$\mathrm{Ba}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}$
$p \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{HgCC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$		$\mathrm{CH}_{3} \mathrm{HgCl}\left(<10^{-4}\right)$
$o-\mathrm{Hg}\left(\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)_{2}$		$\mathrm{Hg}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(<10^{-4}\right)$
		$\mathrm{CH}_{3} \mathrm{HgI}\left(<10^{-4}\right)$
$o-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{HgSC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{Na}$ (thimerosal)		$\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{HgCl}\left(<10^{-4}\right)$
o- $\mathrm{NaCO}_{2} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CONHCH}_{2} \mathrm{CH}\left(\mathrm{OCH}_{2}\right) \mathrm{CH}_{2} \mathrm{HgOH}$ (mersalyl)		$\mathrm{NH}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NH}_{2} \mathrm{PtCl}_{2}\left(<10^{-4}\right)$

Table II
Summary of data processing and heavy atom parameters

Film packs	$\underset{\text { merge }}{R}$		x	y	z	$\left\|\begin{array}{c} \mathrm{W} \text { W elec- } \\ \text { trons) } \end{array}\right\|$	B
Native 56	0.067	Hg	0.2570	0.0	0.0931	0.490	12.0
CMMPU $^{a} 25$	0.100						
34	0.112						
EMC	0.102	Hg_{1}	0.2546	0.0	0.0921	0.250	9.0
		Hg_{2}	0.4354	-0.0146	0.0613	0.130	13.0
$\mathrm{HgBr} \quad 32$	0.103	Hg_{1}	0.2608	0.0	0.0917	0.346	8.0
		Br_{1}	0.1817	0.0154	0.0988	0.150	28.0
		Hg_{2}	0.4363	-0.0058	0.0650	0.113	20.0
		Br_{2}	0.5000	0.0121	0.0600	0.050	18.0

${ }^{a}$ CMMPU, chloromercuri-2-methoxypropyl urea; EMC, $\mathrm{C}_{2} \mathrm{H}_{5}$ HgCl .
summarized for the native data, chloromercuri-2-methoxypropyl urea, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HgCl}_{\text {, and }} \mathrm{HgBr}_{2}$ (bound as $-\mathrm{HgBr}^{\text {) }}$. About 30 zones or packs of one-zone precession photographs are required to record essentially all of the 2.0 - A resolution data, using nickelfiltered $\mathrm{CuK} \alpha$ radiation at crystal to film distance of 6 cm . Fifty-six native planes were processed in checking reproducibility of the densitometry procedures and in obtaining intense enough photographs to record 1.85 -A data. For chloromercuri2 -methoxypropyl urea, 34 all-zone (no layer line screen) film packs were processed and compared with the 25 one-zone photographs in evaluating the all-zone method.

To a great extent we followed the procedures described by Xuong and Freer (15) for treating the all-zone data. Crystals, $(0.3 \mathrm{~mm})^{3}$, were mounted with the b axis (61.0 A) parallel to the rotation or spindle axis of the camera to $\pm 2.5^{\prime}$. Six- to eight-hour photographs were taken at 6° intervals on the spindle axis using a $0.5-\mathrm{mm}$ collimator and tube settings of $40 \mathrm{kv}, 16$ mat. The precession angle was $3^{\circ} 30^{\prime}$; data beyond $3^{\circ} 10^{\prime}$ were not processed because of the uncertainty in assigning the Lorentz correction. This procedure recorded a set of data in reciprocal space as a torus whose inner radius is zero, or in fact slightly negative, and whose outer radius is $2 / \lambda \mathrm{CuK} \alpha=1.30 \mathrm{~A}^{-1}$. At a cassette advance setting of $\mathrm{d}=0 \mathrm{~mm}$ only data to about 1.9-A
resolution fall on the film. We processed data to 2.1-A resolution. With $3^{\circ} 10^{\prime}$ data at 6° intervals, even on the torus equator there is a 20^{\prime} overlap of data between film sets; reflections away from the torus equator may be recorded on five or more different photographs. Since all photographs were taken about the b axis, Bijvoet pairs occur on the same film and are related by mirror symmetry. This symmetry is a great aid in checking crystal alignment, reflection indexing, and intensity measurement. There is a cone-shaped volume of reciprocal space not recorded in the torus of data. It consists of 5% of the volume of the $0.5-\mathrm{A}^{-1}$ sphere of $2.0-\mathrm{A}$ data. Most of this volume can be recorded in eight b axis, zero level photographs.

Although we have not yet completed an analysis of this noscreen method, our impressions seem to correspond to those of other users. Exposure times are reduced by a factor of six to ten; however, one requires a better crystal than those often used in one-zone work. Data processing is more expensive and manual checking of questionable reflections is much more tedious. The internal consistency of measured intensities is slightly poorer; however, this may be attributed to an inadequate computer algorithm. The intensities were measured using a rotating drum densitometer at $0.2-\mathrm{mm}$ raster with magnetic tape output. Integrated intensities were determined using a modification of an algorithm previously described (15).

The data from each film pack, consisting of from two to four films in both one-zone and all-zone procedures, were corrected for Lorentz and polarization factors and scaled internally. Data from different film packs were scaled together in four equally populated shells of $\sin \theta / \lambda$ (17). Using the scale factor from these four zones one could calculate a relative temperature factor in the expression $\exp -\mathrm{B}(\sin \theta / \lambda)^{2}$ so that all of the data had the same average intensity distribution as a function of $\sin \theta / \lambda$. The residual for the merging of all data into one set is defined: R (merge) $=\Sigma$ (all reflections) Σ (all packs) $\mid \bar{I}$ (average) I (pack) |/ Σ (all reflections) Σ (all packs) \bar{I} (pack). The residuals for the one-zone and all-zone data of chloromercuri-2-methoxypropyl urea are presented separately; the \bar{I} (average) were determined for all 59 packs. In the native data the Bijvoct pairs within each pack were averaged before merging, whereas in the derivative data they were carried separately. This accounts to some extent for the lower R value of the native data. Native

Table III Summary of phase calculations
As defined in the text ϵ_{12} is the estimated isomorphic error. $A \pm$ is the average error in the Bijvoet difference per film pack. $\epsilon \pm$ is the estimated average anomalous dispersion error per reflection. ϵ_{j} is the average lack of closure calculated in the phase determination procedure. D_{i} is the average calculated anomalous dispersion error. The numbers beneath the name of the derivatives indicate, respectively, the total number of reflections used in the phase calculations and the number for which the Bijvoet difference was used.

${ }^{\text {a }}$ CMMPU, chloromercuri-2-methoxypropyl urea; EMC, $\mathrm{C}_{2} \mathrm{H}_{5}-$ HgCl .
data were put on an absolute scale by standard Wilson statistics. Derivative data were scaled to the native data by applying relative scale factors and temperature coefficients.
Phase Determination-Initially we calculated h01 (centric projection, $\alpha=0$ or π) difference Patterson syntheses for each heavy atom derivative showing large intensity differences. Several of the derivatives gave similar difference Pattersons. We explored binding conditions for chloromercuri-2-methoxypropyl urea and collected three-dimensional data for it because it had given the "cleanest" appearing projection Patterson (Fig. 1). We calculated the three-dimensional difference Patterson and in particular the IIarker section at $y=0$. In the Harker section one should see only those vectors between heavy atoms at the same "height" or y coordinate. The difference Patterson functions in Fig: 1 illustrate the improvement in going from projection to three-dimensional data.
All of the other compounds, Table I, which reacted with the protein bound at the chloromercuri-2-methoxypropyl urea (major) site. Two of them, HgBr and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HgCl}$ also bound at a nearby minor site. Subsequently we have interpreted the major site as a rather large pocket on one side of the sulfur atom of cysteine-18, while the minor site is a smaller pocket on the opposite side of the sulfur atom. The chloromercuri-2-methoxypropyl urea molecule is apparently too large to fit into the smaller
pocket. As judged by the mercury-sulfur distances there must have been a movement of the sulfur atom of some 0.5 to 1.0 A upon bonding. The heavy atom occupancies are low enough, Table II, so that one need not postulate simultaneous binding of a mercury at both sites of an individual protein.

The Harker sections of HgBr and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HgCl}$ (Fig. 1) illustrate an unfortunate coincidence. Not only are the major site and minor site self-vectors seen, but also the pair of major-minor cross-vectors. The major and minor sites differ by only 0.8 A in y. This means that the 2 -fold phase ambiguity associated with having only 1 heavy atom derivative (the major site chloro-mercuri-2-methoxypropyl urea) is not generally resolved by the second derivative (the minor site HgBr or $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HgCl}$). We, therefore, had to rely on the anomalous dispersion effect to resolve the phase ambiguity. The information content of the Bijvoet pairs is illustrated in the anomalous dispersion Patterson of Fig. 1.
Heavy atom coordinates were determined by least squares refinement with Patterson-determined coordinates as starting values for both major and minor site mercury atoms. The y coordinates of the major site for all three derivatives are assumed to be 0 . The sense of the y coordinate for the minor mercury site in both HgBr and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HgCl}$ was determined by refining both choices against the experimentally observed anomalous dispersion differences. Both major and minor bromine sites were located in a difference, difference Fourier synthesis and subsequently refined. In Table II these coordinates are listed in fractions of the unit cell. The occupancy, W, is given relative to 80 electrons for both mercury and bromine.

Phases were calculated by the method of Blow and Crick (18) as described by Wyckoff et al. (19). In this method an estimate of input error is required to determine the phase probability distribution in the complex plane. As is routinely done, we estimate the three-dimensional isomorphic error, ϵ_{12} in Wyckoff's notation, from the residual errors in the centric zone least square refinement of heavy atom parameters, $\epsilon_{12}=\Sigma$ (all reflections) $\mid F$ (obs) - F (calc) \mid / n (all reflections), where F is the structure factor amplitude as observed experimentally and as calculated. The phase determination calculation yields a final estimate of lack of closure error. Our estimate of isomorphic error corresponded rather well with the calculated lack of closure, $\boldsymbol{\epsilon}_{\mathbf{j}}$ (see Table III).

In estimating the anomalous dispersion errors, $\epsilon \pm$, we took advantage of the considerable amount of redundancy in our data. We first determined population statistics by analyzing all those cases in which a Bijvoet pair of reflections had been observed on four or more film packs. The average error in the Bijvoet difference, $\Delta F \pm=F_{+}-F_{-}$, per film pack is

$$
A \pm=\sum_{i=1}^{n}\left|(\Delta F \pm)_{i}-\overline{\Delta F} \pm\right| /(n(n-1))^{1 / 2}
$$

where n is the number of observations and

$$
\overline{\Delta F} \pm=\sum_{i=1}^{n}(\Delta F \pm)_{i} / n
$$

The distribution of this average error was recorded as a function of $\sin \theta / \lambda$; it did not show any variation as a function of \bar{F}. For input to the phasing calculation, the reflections were divided into two classes. For those reflections where the Bijvoet pair had been observed six or more times, the anomalous dispersion error was calculated directly as $\epsilon \pm=A \pm /(n)^{1 / 2}$. For the remainder of the reflections we set $\epsilon \pm=A \pm(\sin \theta / \lambda) /(n)^{1 / 2}$,
where $A \pm(\sin \theta / \lambda)$ is the value of the average error derived from the $\sin \theta / \lambda$ distribution. For all three derivatives the estimated anomalous dispersion error per reflection, $\epsilon \pm$, agrees rather well with the calculated error, $D_{\mathrm{j}}=\mid \Delta \bar{F} \pm-(F+j-$ $F-j) \mid$. The calculation of the anomalous dispersion difference, $(F+j-F-j)$, is thoroughly discussed by Wyckoff et al. (19). The ratio of the imaginary and real components of the mercury atomic scattering factor was used as $\kappa=0.12$. The average error per reflection, $\epsilon \pm$, is significantly lower than the average error per reading, $A \pm$, because so many Bijvoet pairs were recorded on different film packs.

Within the $2-\mathrm{A}$ sphere there are 6725 lattice points in the quadrant, with $h \geqslant 0, k \geqslant 0$, of which 306 are centric reflections, i.e. h01. Of these, 5055 (226 of which were centric) reflections were assigned phases and used in the electron density map calculation. This means that both the native and at least one derivative were experimentally observed as non-zero. Although we judged chloromercuri-2-methoxypropyl urea to be the best derivative, the ratio of the average lack of closure to average structure factor amplitude, $\epsilon_{\mathrm{j}} / \bar{F}$, is actually higher than for other derivatives. This is due partly to the fact that the chlorn-mercuri-2-methoxypropyl urea films are more intense and include more weak reflections.

The distribution of calculated phases angles for the native protein is essentially flat between 30 and 150° (as well as $210-$ 330°) with an average of 51.6 phases per 5° interval. The distribution then rises toward 0° and peaks sharply with 311 reflections (excluding h0l reflections) in the $-2, \frac{1}{2}$ to $+2 \frac{1}{2}{ }^{\circ}$ interval. Of the 4829 noncentric reflections there are 773 more near 0 or 180° than predicted by a random distribution of relative phase angle (see also Fig. 2 in Paper III (3)).

Electron Density Map Calculations and General CharacteristicsThe maps are calculated at intervals of 0.705 A in X and 0.762 A in Y and in layers 0.676 A in Z, that is perpendicular to the c face of the unit cell. The map was contoured on paper with a Calcomp plotter at $2 \mathrm{~cm}=1 \mathrm{~A}$ and traced onto Perspex sheets. These were mounted vertically and viewed through a halfsilvered mirror (20) so that one could visually superimpose a Kendrew skeletal model on the electron density.
The first map was calculated in May 1971 (13) with the 2.0-A data from chloromercuri-2-methoxypropyl urea and with twothirds of the 2.0-A data from HgBr_{2} and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HgCl}$. The general course of the main chain and about one-third of the side groups were correctly interpreted during the few weeks before Coffee and Bradshaw had the sequence data for the tryptic peptides. As discussed in their paper (1) our tentative interpretation of the electron density map allowed them to assign the relative order of most of the peptides. Later in the summer of 1971 we calculated an improved map with the data summarized in Tables II and III. In general this map was easily interpreted; however, several regions, particularly the CD calcium-binding loop, could not be interpreted until the tangent formula map ${ }^{2}$ was calculated by Hendrickson and Karle (3). Consistent with the objective evaluation presented in Paper III (3) it is our subjective impression that the tangent formula map is more readily interpreted. The electron density protrusions of carbonyl groups are enhanced and in 95 instances appear as a distinct knob of electron density. Five of the phenylalanine benzene rings show a dimpling at their center; whereas only one did in

[^2]the previous map (see Fig. 8 in Paper III (3)). The density at sulfur and calcium positions is more distinct. The continuity of density is strengthened at some weak places along the chain. Spurious joins between groups in van der Waals contact are diminished. We initially built the molecular model using only those chemical constraints implicit in the wire model, i.e. canonical bond lengths and angles. Subsequently we examined the model in terms of van der Waals contacts, hydrogen bonds, and ϕ, ψ angles. In a few instances the model was altered to relieve bad contacts but in general we tried to avoid incorporating preconceived notions.

At only two regions in the molecule is there any significant uncertainty in the interpretation. The loop preceding helix A has low electron density, particularly residues alanine-3 and glycine-4. The exact course of the chain is not well defined; as can be seen in Table V the ϕ, ψ values of residues $1,2,3$, and 5 are outside normally observed ranges. We are therefore not certain of the bond direction between the α carbon and the carbonyl carbon of phenylalanine-2. The positions of the side chain of phenylalanine- 2 at the surface and the N-acetylated alanine-1, tucked into the interior of the protein, could conceivably be interchanged. However the present interpretation is reinforced by the finding of a tyrosine at position 2 in carp component C. ${ }^{3}$ The additional hydroxyl group is readily accommodated in the present structure; it would make unacceptable van der Waals contacts if the phenylalanine side chain were built into the interior.
The other uncertainty concerns an cllipsoidal mass ($2 \times 2 \times$ 3 A) of electron density approximately at the position of the side chain of leucine-35. There seems little doubt of the correctness of glycine- 34 or of lysine- 38 . Threonine- 36 and serine37 are in a β bend (21). Coffee and Bradshaw ${ }^{4}$ found no covalently attached phosphate in the molecule. Neutron activation analyses ${ }^{5}$ ruled out the presence of mercury, iron, manganese, or magnesium. Electron microprobe analyses ${ }^{6}$ of the crystal reveal no atoms of atomic number greater than 20 . In hake muscle calcium-binding protein there is neither attached phosphate nor metal ion other than calcium (22). As will be described later, there is an intramolecular 2-fold axis relating the CD and the EF regions of the molecule (see Table IV for direction cosines). It is suggestive that this 2 -fold rotation places the mass of electron density only 1.3 A from the major heavy atom site. Further, even though it is not in a special position, its y coordinate is very near $0(x=0.2713, y=-0.0025, z-0.2775)$.

DESCRIPTION OF MOLECULE

General Shape-The molecule has the approximate shape of a prolate ellipsoid of revolution (Fig. 2). The course of the main chain is best visualized in terms of the six helices $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, and F which have been interpreted as being derived from a gene triplication (2). Helix C, the CD loop, and helix D are related to the EF region by an approximate 2 -fold axis (Table V and Fig. 3), which roughly coincides with the long axis of the ellipsoid. The over-all configuration of the EF region is remarkably similar to a right hand with thumb and forefinger extended at approximate right angle and the remaining three fingers clenched

[^3](Fig. 4). The thumb points toward the COOH terminus of helix F. The forefinger points along helix E in the NH_{2}-terminal direction. The clenched fingers trace the course of the EF loop about the calcium ion. The two right hands representing the EF and CD regions are related by a 2 -fold axis. The D thumb is tilted outward representing the bend in helix D at residue 65 .

Again in Fig. 5 one views the entire molecule looking down the 2 -fold axis. The AB loop does not bind calcium, as do the CD and EF loops, and is 2 residues shorter. It covers the end of helix E and the arginine -75 to glutamic acid- 81 internal salt bridge. The AB region can be represented by a third right hand covering the top of the molecule. The thumb and forefinger must be drawn together almost parallel with one another because the AB loop turns out from the surface of the molecule, while the CD and EF loops turn in. The palms of all three right hands face the interior of the molecule.
Solvent Interactions and Core Formation-The ellipsoid volume is $16,900 \mathrm{~A}^{3}$. The molecule has 812 atoms excluding hydrogen atoms, or $20.8 \mathrm{~A}^{3}$ per atom. If the ellipsoid had a surface free of convolutions, one could estimate that a shell 2.7 A thick would contain those atoms, plus associated protons, exposed to the solvent. The "inside" of this ellipsoid would then have a volume of $9700 \mathrm{~A}^{2}$. That is 51.6% of the atoms would be inside or inaccessible to solvent. In Table IV each atom is designated I (internal) or S (surface) as judged by the criterion of whether a water molecule, a sphere of van der Waals radius 1.7 A , could make contact with the van der Waals surface about each atom, or associated hydrogen atom. Of all 812 atoms, 43.2% are inside. Even for this smooth protein, seemingly free of clefts or gronves characteristic of enzymes, more of the atoms are exposed to the surface than predicted by the ellipsoid model.

A general examination of solvent accessibility, as well as a subsequent consideration of hydrogen bonding, gives some insight into the forces stabilizing the protein. Of the 324 main chain atoms (nitrogen, carbonyl carbon, and oxygen) which carry a partial charge 54.3% are internal (Table VI). It is not valid to say simply that nominally hydrophilic atoms are found at the surface.

In contrast, if one considers the partially charged atoms of the side chains, only 17.9% are internal. These partially charged atoms consist of all side chain nitrogen and oxygen atoms as well as the terminal carbon atoms of carboxyl and carbamyl groups. All 10 serine and threonine hydroxyl groups and all 13 lysine NH_{2} groups are at the surface. Eight of the ninetecn partially charged groups which are internal are γ carbon atoms of aspartic acid and asparagine or δ carbon atoms of glutamic acid and glutamine. Excepting glutamic acid-81, at least 1 of the oxygen atoms bonded to these γ or δ carbon atoms is at the surface. Six of the ten carboxyl oxygens which coordinate the 2 calcium ions are internal. Finally the 2 carboxyl oxygens of glutamic acid- 81 and 3 of the 4 atoms of the arginine- 75 guanidino group are internal and hydrogen-bonded together. All of the side chain dipoles are at the surface except those associated with the calcium ions or the arginine- 75 to glutamic acid- 81 salt bridge.

The tendency of these dipoles to be at the surface of the molecule is strong enough to bring 89.5% of the other side chain carbon atoms to the surface. For instance, all of the 52β through ϵ carbon atoms of the 13 lysine chains are at the surface except for 1β carbon.

Eighteen of the twenty alanine β carbon atoms, as well as the cysteine β carbon, and sulfur are exposed to solvent. The COOH -terminal oxygen atoms of alanine-108 are at the surface. The acetyl group, APO, of alanine-1 is buried.

Even of the strongly hydrophobic side chain atoms, only 69.5% are internal. Hence the generalization that neutral atoms or even neutral side chains are found on the inside is not so valid as is the statement that side groups with dipoles are found at the surface. Nonetheless this protein has a well defined, strongly hydrophobic core consisting of all, or all except 1 , of the side chain carbon atoms of 7 phenylalanine, 4 isoleucine, 5 leucine, and 3 valine residues plus half of the side chains of phenylala-nine-47, leucine-86, and leucine-105 (Table V and Fig. 2). The volume of this core $\left(2370 \mathrm{~A}^{3}\right)$ is about one-seventh that of the entire molecule. It is composed of 115 carbon (plus bonded hydrogen) atoms or $20.6 \mathrm{~A}^{3}$ per atom. The main chain encloses this core; it does not pass through it.

The structural similarity of the AB, CD, and EF regions is seen in the composition of the core. Each of the six loops, either at its beginning or end, has one core group. The homology is strongest in the AB (phenylalanine-24) and CD (isoleucine-97) loops. In general at each turn of each of the six helices there are one or two groups contributed to the core from the inner aspect of that helix. Isoleucine-11 of helix A and the homologous valine- 43 of helix C are both part, of the core. Interestingly the homologous position 82 in helix E is threonine. Even though valine- 43 and threonine- 82 are related by the 2 -fold axis and have exactly the same staggered configurations relative to the main chain, the hydroxyl group of threonine-82 is just accessible to the solvent; the corresponding carbon of valine-43 is not, because helix D and helix E are 0.7 A further apart than are helices \mathbf{C} and \mathbf{F} at the homologous level. The inner halves of phenylalanine 47 and leucine- 86 form the surface of the core. The homologous leucine- 15 is also half-internal, but helix A has a slightly different orientation relative to helix B , compared to CD and EF; so that leucine- 15 is barely continuous with the core. The homologous positions in helices A and C are alanine14 and alanine-46. These are the only 2 internal alanines of the 20 present. Particularly at alanine- 46 there is space in the core for a larger group; in the hake protein position 46 is valine (23). As defined by ϕ, ψ angles helix C continues through position 50 , which is a core isoleucine. Glycine-89, turns in such a way to terminate the helix; however, the amide hydrogen bond of aspartic acid-90 indicates that the same helical course in helix E is continued as far as it is in helix C . The β position of glycine- 89 is oriented so that only an alanine could substitute for it without causing significant shifts of the main chain. The $\beta-\gamma$ bond of cysteine- 18 does point to the inside of the molecule. There is just enough room for water to approach the sulfur from

> Table IV (Table IV on pages 3319-3321)

The atomic coordinates were measured from the 2 cm per A wire model. Refinement ${ }^{7}$ against observed bond lengths and angles using the program of R. Diamond (35) produced an average shift of 0.15 A per atom. In the second column the letter S indicates that the atom is on the surface or accessible to a solvent water molecule of van der Waals radius 1.7 A . An interior or inacces-
${ }^{7}$ P. Moews performed the refinement calculations.
sible atom is indicated by I. The coordinates are listed in A•100 with the origin on a crystallographic 2 -fold axis. 'The height of the mercury atom in chloromercuri-2-methoxypropyl urea defines $y=0 ; x$ coincides with crystallographic a and z with c^{*}. The intramolecular 2 -fold axis intersects the $y=0$ plane at $x=1.82 \mathrm{~A}$, $z=9.28 \mathrm{~A}$, with direction cosines: $\alpha=0.258, \beta=0.812$ $\gamma=-.524$.

Table IV--continued

Table IV-continued

Table IV-continued

both sides of the main chain. The heavy atom derivatives, HgBr and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HgCl}$ can attach to the sulfur atom from either side, whereas chloromercuri-2-methyoxypropyl urea is apparently too large to bind at the inner site.

The three helices, B, D, and F, also show homologous contributions to the core. At the first inner turn of the helices there are phenylalanine-29, leucine-63, and phenylalanine-102. As was the case with leucine-15, the A and the B helices are related slightly differently from helices C, D, and helices E, F so that phenylalanine-30 is also in the core while lysine-64 and threo-nine-103 are not. In fact leucine- 15 twists away from the core in the same sense and in the same region that phenylalanine- 30 twists in toward the core. Phenylalanine-66 and leucine-105 are homologous and internal, as are valine-33, leucine-67, and valine106. Finally helix B crosses the end of helix \mathbf{F} with its phenyl-alanine-30 in such a way that helix F could continue at most 1 small residue at position 109 in helical configuration. In fact the pike protein has alanine at position 109 (24). The terminus of helix D is not so physically blocked and can complete the last turn, contributing phenylalanine- 70 to the core. In summary, even though there are many hydrophobic atoms at the surface, even of residues like phenylalanine, leucine, isoleucine, and valine, there is a large, well defined hydrocarbon core.

Fig. 2. The muscle calcium-binding protein molecule has the general shape of a prolate ellipsoid of revolution. The intramolecular approximate 2 -fold axis corresponds to the long axis of the ellipsoid. The shell, 2.7 A thick, contains those atoms, exclusive of hydrogen, which would be exposed to the solvent if there were no surface indentations. There is an oblate ellipsoid hydrocarbon core consisting of side chains of phenylalanine, leucine, isoleucine, and valine. The volume of the entire molecule is $16,900 \mathrm{~A}^{3}$; of the molecule inside the 2.7 -A shell, $9700 \mathrm{~A}^{3}$; and of the core, $2400 \mathrm{~A}^{3}$.

Table V

Summary of slructural parameters and interactions
Sequence numbers and residues (A, alanine; C, cysteine; I, aspartic acid; E , glutamic acid; F , phenylalanine; G , glycine; H , histidine; I, isoleucine; K, lysinc; L, leucinc; N, asparagine; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine) are listed in three columns whose alignment corresponds to the three homologous regions of the protein. Question marks after residues $1,2,3,4,5$ and 36 indicate uncertainty as to their orientation. Regions enclosed by solid lines define helices Λ through F. Dashed lines indicate ambiguity in defining the termini of helices

Table V-continued

B and E . Column 5, headed BN, indicates receivers of hydrogen bonds from backbone nitrogen atoms. A number indicates which backbone oxygen receives a hydrogen bond; a blank indicates no bond formed. The column headed Side summarizes side chain interactions. For both BN and Side s means the proton available for hydrogen bonding is accessible to solvent. The following symbols preceded by numbers indicate hydrogen bond receivers: CO , backbone oxygen; O_{2}, carboxylate oxygen; NO, carbamyl group oxygen; and OH , hydroxyl group oxygen. The symbols \quad and Δ refer to hydrophobic side groups contributing wholly or partially to the core. Finally X, Y, and Z assign octahedral vertices to the calcium ligands. The axis is followed by the calcium-oxygen bond distance.

Fig. 3. Helix C, the CD calcium binding loop, and helix D are related to the EF regions by an approximate 2 -fold axis.

Fig. 4. The CD and EF regions are symbolized by a pair of right hands. Helix C (and helix E) runs from the tip to the base of the forefinger. The flexed middle finger corresponds to the CD (and the EF) calcium binding loop. Helix D (and helix F) runs to the end of the thumb. The thumb for helix D is tilted outward, representing the kink in this helix at leucine-65.

Fig. 5. The pre-A bend, A helix, AB bend, and B helix are indicated by solid lines between α carbons. The methyl carbon of the N-acetyl group is drawn as an α carbon to illustrate that it is tucked back into the interior of the protein. If the AB region is symbolized by a right hand the forefinger and thumb must be drawn together almost parallel.

Fig. 6. The CD and EF calcium binding loops are viewed, as in Figs. 3, 4, and 5, down the 2-fold axis. α carbons are indicated by stippling. The individual side chain atoms which coordinate the 2 calcium ions are drawn. The main chain carbonyl oxygen atoms of phenylalanine-57 and of lysine-96 coordinate the CD and EF calcium ions. There is a hydrogen bond from the peptide nitrogen of isoleucine-58 to the carbonyl oxygen of isoleucine97.

Analysis of Hydrogen Bonding-Due primarily to the fact that oxygen atoms can accept 2 protons in hydrogen bonds, whereas hydroxyl oxygen and peptide nitrogen atoms can donate only 1 proton to hydrogen bonds, most proteins have many more potential hydrogen bond acceptors than donors. In muscle calcium-

Table VI
Solvent Exposure

atom	sol	int	Σ	TABLE VII					
BN	44	64	108						
				Hydrogen Bond					
BA	67	41	108						
				Donors and Receivers					
BP	37	71	108	B0 side\|sol ${ }^{\text {c }}$					
B0	67	41	108					no	Σ
dipole	87	19	106	BN	48	10	29	21	108
$\mathrm{KRH}_{\mathrm{EQT}}^{\mathrm{DNS}}$	94	11	105	K	4		35		39
FILV	43	98	141	R	2	1	2		5
A	18	2	20	H			2		2
C	2	0	2	N	1		5		6
0-108	1	0	1	S	1		4		5
APO	0	3	3	Q		1	3		4
Ca	1	1	2	T			5		5
Σ	461	351	812		56	12	86	21	174

Backbone atoms are $B N, B A, B P$ and $B O$, "dipole"
designates all side chain nitrogen and oxygen atoms
as well as the terminal carbons of carboxyl and
carbamyl groups. "KRHDNSEQT" refers to the neutral
carbon atoms of those side chains carrying a dipole.
"FILV" refer to hydrophobic side chains; A, alanine;
C cysteine. " $0-108$ " is a C-terminal oxygen atom;
"APO" is the N-acetyl group.
H-bond donors are backbone nitrogen atoms and side
chains of K, R, H, N, S, Q and T. Receivers are oxygen
atoms of the backbone, side chain and solvent water,
and for some internal BN^{\prime} s none.
binding protein the acceptor, donor ratio is 1.88 (329:174). Obviously in a structure determined to only 1.85 -A nominal resolution and not yet refined, there will be an uncertainty in atomic coordinates of some 0.4 A . Nonetheless, the generalizations drawn from these detailed analyses of solvent accessibility and liydrogen-bonding are certainly valid. In particular, we have assumed hydrogen bonds if the nitrogen to oxygen distance is less than 3.4 A (standard value 2.9) and if the donor, assumed proton position, acceptor angle is greater than 145°.

All of the side chain proton donors, including the weakly hy-drogen-bonding cysteine sulfhydryl group, which is not counted in the 174 donors, are at the surface, except for arginine- 75 (Table VII). Near many of these donors as well as hydrogen

Fig. 7. Glutamic acid-81 is near the NH_{2} terminus of helix E ; its carboxyl group is shielded from the solvent by the $A B$ loop. Its charge is balanced by the partially buried guanidinium group of arginine-75.
bond receivers there is electron density tentatively identified as water. A description of surface water is not included in this report. There is no water seen inside the molecule, nor are there any internal cavities large enough to accept water.

The hydrogen-bonding in the arginine- 75 to glutamic acid-81 region is intricate (Fig. 7). One carboxyl oxygen receives hydrogen bonds from peptide nitrogens of aspartic acid-22 and serine-23. The other oxygen receives protons from the inside η-nitrogen of arginine- 75 and from the peptide nitrogen of threo-nine-78. The 2 nd proton of the inside η-nitrogen as well as the proton of the ϵ-nitrogen are bonded to the carbonyl oxygen of cysteine-18. Finally, the peptide nitrogen of glutamic acid- 81 is hydrogen-bonded to a carboxyl oxygen of aspartic acid-22. Seven hydrogen bonds are formed in payment for bringing the carboxyl-guanidine dipole inside the protein.

In addition to hydrogen bonds of peptide nitrogens from aspartic acid-22, serine-23, and threonine- 78 to the carboxyl oxygens of glutamic acid-81, there are seven peptide hydrogen bonds to side groups. In only four instances, in addition to arginine-75, do there appear to be intraprotein hydrogen bonds involving side chain donors. The hydroxyl proton of serine-23 bonds to the carbonyl oxygen of alanine- 20 in the AB loop where one might have expected a β bend. The peptide proton of glutamic acid- 52 bonds to the carboxyl oxygen of glutamic acid- 62 which does not coordinate to calcium. Lysine- 54 bonds to the carbonyl oxygen of alanine-48 and possibly to the carbonyl oxygen of aspartic acid- 51 as well. Lysine-107 is in good position to bond the carbonyl oxygens of both threonine- 36 and lysine-38.

Of the 108 main chain amide protons in Table VII, 48 bond to main chain carbonyl oxygen atoms. Ten bond to side chain oxygens. Twenty-nine are exposed to solvent. Twenty-one are internal and appear to have no hydrogen-bond receiver. Table V lists the principal interactions of each amino acid.

Their alignment comes from the interpretation of gene triplication (2).
Helices, Sheets, and Bends-Each of the six helices shows a significant deviation from the canonical α helix. This ideal α helix has ϕ and ψ values near -60° and -40°. The amide nitrogen of residue n forms a linear hydrogen bond to the carbonyl oxygen of residue $n-4$. In a 3_{10} helix the amide nitrogen of residue n bonds back to the carbonyl oxygen $n-3$. For example, helix A both begins and ends with a 3_{10} configuration. As seen in Table V , " N " of "C-18" bonds to "CO" of residue 15. Helix D has only 3_{10} hydrogen-bonding, 63 to 60,64 to 61,66 to 63 , and 68 to 65 . The helix bends at lcucinc-65, as exemplified by $\phi=$ $-140^{\circ}, \psi=48^{\circ}$. At the terminus of helix E glycine-89 ($\phi=$ $-127^{\circ}, \psi=5^{\circ}$) twists so as to formally end the helix, but then aspartic acid- 90 forms a 3_{10}-type hydrogen bond back to lysine87, making helix E as long as the homologous helix C .

In addition to these examples in helices D and E , alanine- 31 and lysine- 45 in the middle of helices B and C appear not to form hydrogen bonds. As can be seen the ϕ, ψ values of many nominally helical residues differ significantly from the canonical -60°, -40°. In view of these variations in hydrogen-bonding patterns and in ϕ, ψ values, it is often arbitrary as to where one assigns the helix termini. For example, aspartic acid-51 at the end of the C helix bonds back to phenylalanine-47. The ϕ value is -71° whereas ψ is 86°. In contrast cysteine- 18 bonds back to leucine-15. The ϕ value is -117° and ψ is 11°. Helix F has a regular course; however, its 1st residue, valine- 99 is 25° away from the accepted ϕ, ψ range. The COOH-terminal alanine-108 turns away from a hydrogen-bonding direction. A glycine or alanine could be added as residue 109, thereby obliging alanine-108 to bond to alanine-104.

There are two single antiparallel β-pleated sheet configuration hydrogen bonds: isoleucinc-97 to its homologue, isoleucine-58, and leucine- 77 to lysine-64. In both of these regions the β-bonding pattern could be extended to three amide groups with only minor changes in the configuration of the protein.

Both the CD and the EF loops contain type I β bends (21) as indicated by the hydrogen bond at lysine- 54 to -51 and at its homologue lysine- 93 to -90 . In the homologous region of the AB loop the amide proton of aspartic acid-22, as well as that of serine-23, are bonded to the internal carboxyl oxygen of glutamic acid-81. Although each of the three loops, pre A, BC, and DE , have one type I β bend, these bends do not occur at homologous sites. This is not surprising, since each of the loops have different environments.

Calcium Coordination-The CD calcium is coordinated by 6 oxygen atoms in an octahedral arrangement (Fig. 6). Each of these ligands in the CD loop is indicated in Table V by $\pm \mathrm{X}$ or $\pm \mathrm{Y}$ or $\pm \mathrm{Z}$ to define a local coordinate system. The ligands of the homologous EF loop can also be visualized as occupying the corners of an octahedron. The approximate 2 -fold axis which relates the CD and EF regions also relates the two octahedra. However the EF octahedron is distorted in that there is no ligand in the -X direction; residue 98 is glycine. Nonetheless, the EF calcium ion is six-coordinate; aspartic acid- 92 bonds to the calcium with both of its carboxyl oxygen atoms. 'The EF' calcium ion appears to be accessible to the solvent in the -X direction; however, there does not appear to be a bound water in the electron density map. The CD calcium is not exposed to solvent.
In smaller organic and inorganic compounds calcium coordination number and geometry are variable. Calcium is coordinated by oxygen as opposed to nitrogen ligands. In CaCl_{2}-glycylgly-
cylglycine $-3 \mathrm{H}_{2} \mathrm{O}$, Van Der Helm and Willoughby (25) found calcium to be seven-coordinate with oxygen-calcium bond distances ranging from 2.296 to 2.503 A , with an average distance of 2.390 A for the 2 water, 2 carbonyl, and 3 carboxyl oxygen atoms. The oxygen-calcium bond distances in muscle calciumbinding protein range from 2.01 to 2.78 A , as indicated in Table V, with an average for the 12 distances of 2.40 A . Considering the nominal resolution of this structure determination and the fact that the structure has not yet been refined, the bonding distance of 2.0 A cannot be considered significantly different from 2.4 A. At each site there are four carboxylate groups with no lysine or arginine residue near enough to make formal electrical neutrality.

Calcium is bound by two other proteins whose structures are known. In Staphylococcal nuclease (26) "the calcium ion is coordinated by an approximately square array of carboxylate groups with the distance to aspartic acid-19 being somewhat longer than that to the others in the array." A peptide carbonyl oxygen is in the primary coordination sphere in displaced octahedral geometry. Several other oxygen atoms, including one from water, form a secondary coordination shell. In thermolysin (27) there are 4 calcium ions. Two are at a double site with calcium-calcium distance 3.8 A . "This pair of ions is surrounded by a cluster of ordered water molecules and backbone carbonyl groups" and five carboxylate groups. One of the ions is not accessible to solvent. The coordination of both "may be octahedral." "A third presumed calcium site is situated in an exposed region" near aspartic acid-57. Possibly a fourth calcium interacts with an exposed loop in the region 196 to 199.
The important point is that even though the inner coordination shell about the calcium ion tends to be octahedral, the backbone polypeptide configuration varies widely among the sites in these three proteins. It seems highly improbable that the very similar configurations of the CD and EF regions result from convergent evolution. Their structural similarity results from their homology.

In most metal-binding proteins other than muscle calciumbinding protein the metal-coordinating residues come from distant parts of the sequence: in carboxypeptidase: zinc, histidine69, glutamic acid-72, and histidine-196, $(28,29)$; in insulin: zinc, histidine-B10 (trimer) (30) ; in carbonic anhydrase: zinc, histi-dine-93, histidine-95, and histidine-117 (31); in staphylococcal nuclease: calcium, aspartic acid-19, aspartic acid-21, aspartic acid-40, threonine-41, and glutamic acid-43 (26); in thermolysin: zinc, histidine-146, glutamic acid-166, calcium-calcium, aspartic acid 138, glutamic acid-177, aspartic acid-185, glutamic acid-190, and aspartic acid-191; in rubredoxin: iron, cysteine-5, $-10,-38$, -41 ; in high potential iron-sulfur protein: iron, cysteine-43, -46, $-63,-77$ (32). In contrast, ferredoxin coordinates 2 iron atoms with closely spaced cysteine sulfhydryl groups $8,11,14,18$, and $35,38,41,45$. The similarity to muscle calcium-binding protein is incomplete in that cysteine-18 coordinates the second iron while cysteine-41 coordinates the first. However, in ferredoxin, as in muscle calcium-binding protein, the two metal-binding regions are related by an approximate 2 -fold axis. ${ }^{8}$ It may well be that the linear proximity of the calcium coordination ligands in this protcin increased the probability that a duplication in the gene coding for one section would meet with evolutionary sucress.

Summary of Structural Characteristics-Although denaturation
${ }^{8}$ L. Jensen, personal communication.
conditions for muscle calcium-binding protein have not yet been fully explored, it does appear to be a rather stable protein. The calcium form is reported to be stable in 8 m urea (7,33). In the presence of calcium the protein is soluble up to 80 mg per ml ; while in its absence it is much less soluble. We have failed to grow crystals of the calcium-free form. However, we have grown crystals of the carp protein B after adding calcium to previously EGTA-treated protein, even after it stood at room temperature several days. Konosu et al. (7) observed a low intrinsic viscosity of 2.3 ml per g and suggested that the protein "approximates more closely to the ideal case of the spherical protein molecule."

We have noted the apparent loss, relative to the denatured state, of 21 main chain hydrogen bonds. This inferred instability is apparently fully compensated by the formation of the large hydrocarbon core and by the coordination of the 2 calcium ions. There are from 57 to 64, depending on the definition of helix termini, residues in six helices. They too appear to be stabilizing configurations, even though each of the helices has significant deviations from the ideal α helix.

POSSIBLE FUNCTIONAL MECHANISMS

The function of muscle calcium-binding protein remains unknown. Attempts to detect any catalytic activity have been unsuccessful (5). An examination of the surface reveals no pits or grooves characteristic of the enzymes of known structure. It seems reasonable then to explore the idea that the protein functions by mediating the concentration of calcium ions in muscle.

The fact that the CD and EF calcium-binding loops are related by an intraprotein 2 fold axis suggests that one consider the possibility of cooperative binding between the two calcium sites. Benzonana et al. (34) studied calcium binding and state that "a closer inspection of" the Scatchard plots "suggests a downward curvature of the binding curves at low calcium concentration, an indication, generally of cooperativity between sites." If this suggestion of cooperativity is confirmed by studies at lower calcium ion concentration, one might have an explanation for the glycine at position 98 . That vertex, " $-X$," of the EF octahedron is open to the solvent. It may well be that the EF calcium is the first to dissociate. Even though the two sites are 11.9 A apart, there is a direct link between them via the isoleu-cine-58 to isoleucine-97 hydrogen bonds (Fig. 6). The peptide nitrogen of valine-99 is only 4.8 A from the carbonyl oxygen of glycine-56. And the peptide nitrogen of isoleucine-97 is 4.4 A from the carbonyl oxygen of isoleucine-58. Hence the single hydrogen bond in β-antiparallel sheet configuration seen in the calcium-bound structure could easily be extended to three with a backbone movement of some 1.5 A .
There is enough sequence and structure similarity between the AB and the CD-EF regions to suggest a third homologous region in the protein (2). This interpretation demands a 2 -residue deletion in the $A B$ loop (Table V). Further, there is not a 3rd calcium ion bound in the ΛB loop. Instead, at the place where a calcium would be, by homology with CD or EF , is found the invariant internal salt bridge, arginine-75 to glutamic acid-81 (Fig. 7). The suggested cooperativity between the CD and EF regions could reasonably be expected to extend to this AB loop. The D helix is uniquely distorted, particularly at leucine-65. The second β-antiparallel sheet-type hydrogen bond links the peptide nitrogen of leucine- 77 (near the salt bridge) to the carbonyl oxygen of lysine-64 (in the middle of the distorted D helix). The release of calcium could change the configuration of the AB
loop and expose glutamic acid-81 and arginine- 75 to the solvent. In this new state the calcium-binding protein would have a different affinity for another muscle protein.

REFERENCES

1. Coffee, C. J., and Bradshaw, R. A. (1973) J. Biol. Chem. 248, 3305
2. Khetsingle, R. H. (1972) Nature 240, 85
3. Hendrickson, W. A., and Karle, J. (1973) J. Biol. Chem. 248, 3327
4. Kretsinger, R. H., Dangelat, D., and Bryan, R. F. (1971) J. Mol. Biol. 59, 312
5. Pechère, J.-F., and Focant, B. (1965) Biochem. J. 96, 113
6. Hamoir, G., and Konosu, S. (1965) Biochem. J. 96, 85
7. Konosu, S., Hamoir, G., and Pechère, J.-F. (1965) Biochem. J. 96, 98
8. Pechère, J.-F., Demaille, J., and Capony, J.-P. (1971) Biochim. Biophys. Acta 236, 391
9. Gerday, C., and Busifana Rao, K. S. P. (1970) Comp. Biochem. Physiol. 36, 229
10. Jebsen, J. W., and Hamoir, G. (1958) Acta Chem. Scand. 12, 1851
11. Focant, B., and Pechère, J.-F. (1965) Arch. Int. Physiol. Biochem. 73, 334
12. Pechère, J.-F. (1968) Comp. Biochem. Physiol. 24, 289
13. Kretsinger, R. H., Nockolds, C. E., Coffee, C. J., and Bradshaw, R. A. (1971) Cold Spring Harbor Symp. Quant. Biol. 36, 217
14. Zeppezauke, M., Eiklund, H., and Zifppezauer, F. S. (1968) Arch. Biochem. Biophys. 126, 564
15. Xuong, N., and Frier, S. T. (1971) Acta Crystallogr. Sect. B 27, 2380
16. Nockolds, C. E., and Kretsinger, R. H. (1970) J. Sci. Instrum. 3, 842
17. Ras, A. D. (1965) Acta Crystallogr. Sect. B 19, 683
18. Blow, D. M., and Crick, F. H. C. (1959) Acta Crystallogr. 12, 794
19. Wyckoff, H. W., Tsernoglou, D., Hanson, A. W., Knox, J. R., Lee, B., and Richards, F. M. (1970) J. Biol. Chem. 245, 305
20. Richards, F. M. (1968) J. Mol. Biol. 37, 225
21. Venkatchalam, C. M. (1968) Biopolymers 6, 1425
22. Pechère, J.-F., Capony, J.-P., and Ryden, L. (1971) Eur. J. Biochem. 23, 421
23. Pechere, J.-F., Capony, J.-P., Ryden, L., and Dematlle, J. (1971) Biochem. Biophys. Res. Commun. 43, 1106
24. Frankenne, F., Joassin, L., Closset, J., and Gerday, C. (1971) Arch. Int. Physiol. Biochem. 79, 15
25. Van Der Helm, D., and Willoughby, T. V. (1969) Acta Crystallogr. Sect. B 25, 2317
26. Cotton, F. A., Bier, C. J., Day, V. W., Hazen, E. E., and Larson, S. (1971) Cold Spring Harbor Symp. Quant. Biol. 36, 243
27. Matthews, B. W., Colman, P. M., Jansonius, J. N., Titani, K., Walsh, K. A., 2nd, Neurath, H. (1972) Nature 238, 41
28. Lipscomb, W. N., Hartsuck, J. A., Quiocho, F. A., and Reeke, G. N. (1969) Proc. Nat. Acad. Sci. U. S. A. 64, 28
29. Bradshaw, R. A., Ericsson, L. H., Walsh, K. A., and Neurath, H. (1969) Proc. Nat. Acad.' Sci. U. S. A. 63, 1389
30. Blundell, T. L., Cutfield, J. F., Dodson, E. J., Dodson, G. G., Hodgkin, D. C., and Mrrcola, D. A. (1971) Cold Spring Harbor Symp. Quant. Biol. 36, 233
31. Kannan, K. K., Liljas, A., Waara, I., Bergsten, P. C., Lovgen, S., Standberg, B., Bengtsson, J., Carlbom, U., Fridberg, K., Jarup, L., and Patef, M. (1971) Cold Spring Harbor Symp. Quant. Biol. 36, 221
32. Watenpaugh, K. D., Sieker, L. C., Herriott, J. R., and Jensen, L. H. (1971) Cold Spring Harbor Symp. Quant. Biol. 36, 359
33. Piront, A., Hamoir, G., and Crokafrt, R. (1968) Arch. Int. Physiol. Biochem. 76, 1
34. Benzonana, G., Capony, J.-P., and Pechère, J.-F. (1972) Biochim. Biophys. Acta 278, 110
35. Diamond, R. (1966) Acta Crystallogr. Sect. B 21, 253
36. Matthews, B. W. (1966) Acta Crystallogr. Sect. B 20, 230

[^0]: * This research has been supported by National Science Foundation (GB-29306) and by National Institutes of Health (1 R01 AM16253) grants. We thank Dorothea Dangelat and Marianne Dannbeck for technical assistance and Robert Tufty for computer programming.
 \ddagger United States Public Health Service Research Career Development Awardee, AM-16253.
 § Present address, Electron Microscopy Unit, University of Sydney, Sydney, Australia 2006.

[^1]: ${ }^{1}$ Performed by J. Turnipseed, Chemistry Department, University of Virginia.

[^2]: ${ }^{2}$ Structure factors, phases, and atomic coordinates have been deposited with Protein Data Bank, Department of Chemistry, Brookhaven National Laboratory, Upton, N. Y. 11973, and University Chemical Laboratory, Cambridge CB2 1EW, England.

[^3]: ${ }^{3}$ C. J. Coffee, R. H. Kretsinger, and R. A. Bradshaw, manuscript in preparation.
 ${ }^{4}$ C. J. Coffee and R. A. Bradshaw, personal communication.
 ${ }^{5}$ Performed by R. Allen, Chemistry Department, University of Virginia.
 ${ }^{6}$ Performed by F. W. Fraser and E. J. Brooks, Central Materials Research Activity, United States Naval Research Laboratory.

