
• Stabilization of the Transition State

• Enormous Rate Accelerations

• Binding Energy of ES

• Entropy Loss and Destabilization of ES

• Types of Catalysis

• Serine Proteases

• Aspartic Proteases

• Lysozyme

Mechanisms of Enzyme Action

Stabilizing the Transition State

• Rate acceleration by an enzyme means that the energy barrier between
ES and EX‡ must be smaller than the barrier between S and X‡

• This means that the enzyme must stabilize the EX‡ transition state more
than it stabilizes ES

E
A cyclohexane “flippase” would bind more tightly to the eclipsed part of the
transition state than to either of the staggered ground state conformers
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Rate Acceleration in Enzyme-Catalyzed Reactions

• Mechanisms of catalysis:
•

– Entropy loss in ES formation

– Destabilization of ES

– Covalent catalysis

– General acid/base catalysis

– Metal ion catalysis

– Proximity and orientation
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Binding Energy of ES

Competing effects determine the position of ES on the energy scale

• Try to mentally decompose the binding effects at the active site into favorable
and unfavorable

• The binding of S to E must be favorable

• But not too favorable!

• Km cannot be "too tight" - goal is to make the energy barrier between ES and
EX‡ small
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Entropy Loss and Destabilization of ES

raising the energy of ES raises the rate
• For a given energy of EX‡, raising the energy of ES will increase the catalyzed rate

• This is accomplished by
•

– a) loss of entropy due to formation of ES

– b) destabilization of ES by

• strain

• distortion

• desolvation
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Covalent Catalysis

• Enzyme and substrate become linked in a covalent bond at one or more
points in the reaction pathway

• The formation of the covalent bond provides chemistry that speeds the
reaction

1. Chymotrypsin
Elastase
Esterases
Subtilisin
Thrombin
Trypsin

2. G-3-P dehydrogenase
Papain

3. Alkaline phosphatase
Phosphoglucomutase

4. Phosphoglycerate mutase
Succinyl-CoA synthetase

5. Aldolase
Decarboxylases
Pyridoxal phosphate-dependent
enzymes
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The Enzyme as Nucleophile

G-3-P dehydrogenase
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General Acid-base Catalysis

a proton is transferred in the transition state

• "Specific" acid-base catalysis involves H+ or OH- that diffuses into the catalytic
center

• "General" acid-base catalysis involves acids and bases other than H+ and OH-

• These other acids and bases facilitate transfer of H+ in the transition state

Specific acid-base catalysis      General acid-base catalysis

An ionizable group on a protein will be most effective as a H+ transfer
agent at or near its pKa

Biochemistry usually happens near pH7, where histidine is the most
effective general acid or base (imidazole pKa = 6)
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Low-Barrier Hydrogen Bonds

• Typical O - O distance in C=O…..H-O is 2.8 Å

• O-H is 1 Å, H-bond is 1.8 Å

• Bond order ~0.07

• Typical bond strength 10-30 kJ/mol

• Protein structure can constrain H-bond donor and acceptor to be close

• O - O distance may be as low as 2.3 Å

• When there is no barrier to H exchange, the interaction is a low-barrier H-bond

• Typical LBHB strength may be 60 kJ/mol

E

H

H

O O

O O

O OO OH H

2.8 Å 2.5 Å 2.3 Å

• LBHBs require matched donor/acceptor pKas

• A weak H-bond in E or ES may become a LBHB in an E’S  intermediate or in
EX‡
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The Serine Proteases

Trypsin, chymotrypsin, elastase, thrombin, subtilisin, plasmin...

• All involve a serine in catalysis - thus the name

• Ser is part of a catalytic triad of ser, his, asp

• Serine proteases are homologous, but locations of the three crucial residues differ
somewhat

• Enzymologists agree, however, to number them always as his57, asp102, ser195
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SubstrateSpecificity in the Serine Proteases
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Experimental Evidence for Mechanism

• Most studies use artificial substrates
• p-nitrophenylacetate cleaved to p-nitrophenolate (lmax = 400 nm)

• At high [E], a rapid burst of p-nitrophenolate is observed

• Followed by slower, steady-state hydrolysis

11



Burst-phase kinetics

• Evidence for  a 2-step mechanism

• Fast first step

• Slower second step

• E + A        E’P + H2O        Q + E

• Fast when [E’P] is v. small

• Slows down until E is saturated by E’P

rds
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Serine Protease Mechanism

A mixture of covalent and general acid-base catalysis

• Asp102 functions only to orient his57

• His57 acts as a general acid and base

• Ser195 forms a covalent bond with peptide to be cleaved

• Covalent bond formation turns sp2 C into sp3

• The tetrahedral oxyanion intermediate is stabilized by NH of gly193 and ser195
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A Detailed Mechanism for Chymotrypsin
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The Aspartic Proteases

   pepsin, chymosin, cathepsin D, renin and HIV-1 protease

• All involve two asp residues at the active site

• Two asps work together as general acid-base catalysts

• Most aspartic proteases have a tertiary structure consisting of two lobes
(N-terminal and C-terminal) with approximate two-fold symmetry

• HIV-1 protease is a homodimer

HIV Protease

Pepsin

16



Aspartic Protease Mechanism

the pKa values of the asp residues are crucial

• One asp has a relatively low pKa, other has a relatively high pKa

• Deprotonated asp acts as general base, accepting a proton from H2O, forming
OH- in the transition state

• Other asp (general acid) donates a proton, facilitating formation of tetrahedral
intermediate

• What evidence exists to support the
hypothesis of different pKa values for
the two asp residues?

• If activity increases with increasing
pH, there is likely a general base at
the active site

–can’t function when protonated
(low pH)

• If activity decreases with increasing
pH, there is likely a general acid at
the active site

–can’t function when
deprotonated (high pH)

• If both, we get a bell-shaped activity
profile

•Curve fitting allows an estimate of pKas

•In pepsin, one asp has pKa of 1.4, the other 4.3

•This simple model was modified in 2000…
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A Mechanism for Asp Proteases
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HIV-1 Protease

a novel aspartic protease
• HIV-1 protease cleaves the polyprotein

products of the HIV genome
• This is a remarkable imitation of

mammalian aspartic proteases
• HIV-1 protease is a homodimer - more

genetically economical for the virus
• Active site is two-fold symmetric
• Mechanism doesn’t need different pKas

What does HIV Protease do?
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Therapy for HIV?

protease inhibitors as AIDS drugs

• If the HIV protease can be selectively inhibited, then new HIV particles
cannot form

• Several novel protease inhibitors are currently marketed as AIDS drugs

• Many such inhibitors work in a culture dish

• However, a successful drug must be able to  kill the virus in a human
subject without blocking other essential proteases in the body
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Lysozyme

• Lysozyme hydrolyzes polysaccharide chains and ruptures certain bacterial cells
by breaking down the cell wall

• Hen egg white enzyme has 129 residues with four disulfide bonds

• The first enzyme whose structure was solved by X-ray crystallography (by David
Phillips in 1965)

NAG - N-acetylglucosamine
NAM - N-acetylmuraminic acid

asp52

glu 35
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A

F

Lysozyme cuts at D-E
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Substrate Analog Studies

• Natural substrates are not stable in the active site for structural studies

• But analogs can be used - like (NAG)3

• Fitting a NAG into the D site requires a distortion of the sugar

• This argues for stabilization of a transition state via destabilization (distortion
and strain) of the substrate
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The Lysozyme Mechanism

• Studies with 18O-enriched water show that the C1-O bond is
cleaved on the substrate between the D and E sites

• This incorporates 18O into C1

• Glu35 acts as a general acid

• Asp52 forms a covalent intermediate
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Mechanistic Evidence

can a covalent intermediate be observed?
• How to make the rate of formation of the covalent intermediate faster than its

breakdown?
• Mutate glu52 to gln
• Slows the reaction enough to see intermediates br mass spectrometry
• Deactivate the glycosidic C1 to slow hydrolysis of the intermediate sufficiently for

crystallography
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Controls over Enzyme Activity

• Rate slows as product accumulates
• Rate depends on substrate availability
• Genetic controls - induction and repression
• Enzymes can be modified covalently
• Zymogens, isozymes and modulator proteins
• Allosteric effectors and inhibitors

Interconvertible Enzymes

Enzymes regulated by covalent modification
• Converter enzymes

–Protein kinase, protein phosphatase
–Phosphorylation at S,Y,T modulates enzyme activity

• Cyclic AMP-dependent protein kinase (PKA) is a R2C2 tetramer
• Regulatory (R) subunits bind cAMP (KD = 30 nM)
• cAMP binding releases R subunits from C (catalytic) subunits

29



Zymogens - Inactive Enzyme Precursors

Enzymes regulated by covalent modification
• Zymogens, or proenzymes, are synthesized as

inactive proteins
• Activated by proteolysis
• Irreversible (unlike allosteric regulation or

covalent modification)
–insulin
–digestive tract enzymes
–blood clotting factors
–caspases

Proteolytic Activation of Chymotrypsinogen
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The Blood Clotting Cascade
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Isoenzymes

multimeric enzymes with slightly different subunits
• Lactate dehydrogenase (LDH) exists as 5 different isoenzymes

–A4, A3B, A2B2, AB3, B4

• Cells in different tissues express different levels of A and B and so control
the isomeric composition according to their metabolic requirements
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Allosteric Regulation

A → B → C → D → E → F

• Feedback regulation:
• If F, the essential end product, inhibits enzyme 1, 2, 3 or 4, it blocks its own

synthesis (negative feedback)
• If F is an activator of enzyme 1, 2 etc it will accelerate its own synthesis

(positive feedback)

1 2 3 4 5

• Regulatory enzymes (subject to feedback regulation)
–Do not obey Michaelis-Menten kinetics

• Behavior of substrates S
–v0 vs [S] plots are S-shaped (sigmoidal)
–v0 is proportional to [S]n where n > 1 (power law)
–Binding of one S to a subunit increases binding of a second S
–This is positive cooperativity

• Regulation by feedback inhibitors
–Does not conform to normal inhibition patterns

• Regulatory effects are achieved by conformational changes when
effector molecules bind
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A Model for Allosteric Behavior

• Monod, Wyman, Changeux (MWC) model: allosteric proteins can exist in two
states R (relaxed) and T (taut)

• In this model:
–all the subunits of an oligomer are in the same state
–T state predominates in the absence of substrate S
–S binds much tighter to R than to T

• Cooperativity is achieved because S binding increases the population of R,
which increases the sites available to S

• Ligands such as S are positive homotropic effectors
• Molecules that influence the binding of something other than themselves are

heterotropic effectors
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c = KR/KT
L = T0/R0

n = number of monomers
Y = [occupied sites]/[total sites]
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• This is a K system
• [S] required for half-maximum velocity K0.5 changes in response to effectors
• Vmax is constant for A, I, and no A or I

• V systems are less common
• K0.5 remains constant in response to effectors
• Vmax changes
• v0 vs [S] plots are hyperbolic, not sigmoidal
• R and T have the same affinity for S but different catalytic efficiencies
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