\#\# 11Sept 2019 CHeM106\#

Equivalence pornt?
Added equivalent umbu of woles of oft as thune were cules of acide stact

$$
\mathrm{HA} \text { YOHt } \rightarrow \Lambda^{\prime}+\mathrm{H}_{2} \mathrm{O}
$$

Buttus to naintain the p^{H} of asgstim
(1) Talle the dissoination neaction of a meale aide

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons A^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

(2) The dissociafton consfent $\left(K_{A}\right)$ for the weale aird is

$$
K_{A}=\frac{(\text { Produch })}{[\text { Teadart }]}=\frac{\left[H_{3} 0^{+}\right][4]}{[H A]}
$$

(3) Let's nearnenge the equetion to is ilate

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} \\
& \\
& {\left[\mathrm{H}_{3} 0^{\dagger}\right]=K_{A}\left(\frac{\left[\mathrm{HA}_{A}\right]}{[A]}\right)}
\end{aligned}
$$

(4) Tulre the negatial log of both Sidas

$$
\begin{aligned}
& \text { Tuke the vegatice } \log \text { of } \\
& -\log \left[H_{3} 07\right]=-\log k_{A}+\left(-\log \frac{[16 A]}{[F]}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.p^{H}=p \lambda_{A}-\log : \frac{(A A]^{\prime}}{[A]}\right) \\
& p^{\prime}+ \\
& p^{\prime}=p_{A}+\log \left(\frac{[A]}{[A A]}\right)
\end{aligned}
$$

Henlusar - Hasse bach equation
Dangle: A mixture of 0.2 m Acefic acill and 0.3 M Sodinm aretate is gien to you. (alculate the p^{4} of the system it the phat aretio aild is 4.76
wetic aid a.electe

$$
\begin{aligned}
& p H=p^{\left(h_{z}\right.}+\log \left(\frac{[\text { Acetate }]}{[\text { Acetic Aid }]}\right. \\
& p H=4.76+\log \left(\frac{0.3 m}{0.2 \mathrm{~m}}\right) \\
& p H=4.76+0.67 \\
& p+x=5.43
\end{aligned}
$$

Exumlez
The pH of a solution of (attic acid and lactate is 4.30. Calculate the $p^{K_{A}}$ of lactic air when the conmerinions of lactic acid and instate ae 0.02 m and 0.073 m vespecticly.
$\begin{aligned} & H A=\text { lactic and } \\ & A^{-}=\text {lactate }\end{aligned} \quad \mathrm{PH}=\mathrm{ph}_{A}+\log \left(\frac{[1-]}{(1 H A)}\right.$

$$
\begin{aligned}
& p K_{A}=p A-\log \left(\frac{0.073}{0.02}\right) \\
& p K_{A}=4.3-0.56 \\
& N_{A}=3.74
\end{aligned}
$$

