
Kinetic Theory 

 Much of gas-phase behavior is modeled by classical physics.   The kinetic theory of gases is the basis 
of all mathematical gas laws.  This lecture focuses primarily on the motion of gas molecules. 

 Kinetic theory of gases is as follows: 
1. A gas consists of molecules in ceaseless, random motion.  The molecules collide with 

each other and with the walls of their container elastically, such that kinetic energy is 
conserved (frictionless). 

2. The size of gas molecules is considered negligible, such that their average diameters 
are much smaller that the distances traveled between collisions 

3. Gas molecules do NOT interact and have no significant intermolecular attractions. 
 

 Based on the assumption that the molecules do not interact, the potential energy of the 
molecules is independent of their separation, and is thus set equal to zero.  Therefore, the 
total energy of a gas sample is kinetic. 
 

𝐸𝑘 =
3

2
𝑅𝑇  (Kinetic theory)    (1.34) 

 The equation above is linear.  We see that kinetic energy is a function of 
temperature.  The slope of the plot of Ek vs cT is the gas constant R. 

 
Derivation of the Ideal Gas Law 

 In the image below, a gas particle moving along the forward direction collides with a wall at 
velocity vi and bounces off in the negative direction at velocity vF.  The magnitudes of the 
initial and final velocities are equal (postulate #1 of kinetic theory)  

 

 
 If the kinetic energy of the particle is given by Ek = ½ mv2, we can describe the 3-dimensional 

energy by expressing v2 as the sum of the squares of the x, y, and z components of the velocity 
(recall that velocity is a vector) 

𝑣2 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 

 
o We can see from the figure above that, although the magnitude of v is the same, the 

sign changes.  Therefore, we can calculate the acceleration of the particle: 

 𝐴 =
𝑑𝑣

𝑑𝑡
 



 
o The force of impact of a single particle on the wall is: 

𝐹 = 𝑚
𝑑𝑣

𝑑𝑡
 

 
o For a macroscopic sample, N particles collide with the wall during time t.  Because of 

this, the force on the wall varies with time, and is thus described as a function of t.  
The average force exerted on the wall is described as: 
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    Eq. 19.1   (19.5) 

 
o To simplify the expression, we can assume that the particle travels along a one-

dimensional path (x-axis).  We can analyze the change in velocity in x: 
∆𝑣 𝑥 = 𝑣𝐹𝑥 − 𝑣𝑖𝑥

=  2𝑣 𝑥 

 
o If we select our time period, t, to be the time it takes for a particle to strike the wall, 

bounce elastically to the other wall, and travel back along the x-direction, then the 
total distance traveled is 2a.    

𝑣 𝑥 =
2𝑎

𝑡
;   𝑡 =

2𝑎

𝑣𝑥
 

 
o Plugging our terms for Δv and t into 19.1, and evaluating in the x-axis: 

〈𝐹〉𝑥 =
𝑁𝑚(2𝑣𝑥)

(
2𝑎

𝑣 𝑥
)

=
𝑁𝑚(𝑣𝑥)2

𝑎
 Eq. 19.2  (19.7) 

 
o Since the particle is moving along x, it strikes the wall in the yz plane, which has area 

bc (refer back to figure).  Given that P = F/A: 

𝑃𝑥 =
(

𝑁𝑚(𝑣 𝑥)2

𝑎
)

𝑏𝑐
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𝑁𝑚(𝑣𝑥)2

𝑉
 

 
o The magnitude of the velocity is the same in all directions, so: 

𝑣2
𝑎𝑣𝑔 = 𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2 = 3𝑣𝑥
2 

(
𝑣2

𝑎𝑣𝑔

3
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2 

o Therefore, we can expand our expression for pressure to all dimensions: 

𝑃 =
𝑁𝑚𝑣𝑎𝑣𝑔

2

3𝑉
      Eq. 19.3a (19.8) 

 
o In terms of kinetic energy: 

𝐸𝑘 =
1

2
𝑚𝑣2 ;   2𝐸𝑘 = 𝑚𝑣2 

 

𝑃 =
2𝑁𝐸𝑘

3𝑉
 Eq. 19.3b 

 

𝑃 =
2𝑁 (

3
2 𝑅𝑇)

3𝑉
 



 
𝑃𝑉 = (𝑛)𝑅𝑇     For macroscopic samples, where n represents mole units of N 
𝑃𝑉 = 𝑁𝑘𝐵𝑇      Applied to the molecular level (kB= R/NA) 
 

Gas velocity distributions 
 

 In terms of molar quantities:  
3

2
𝑅𝑇 =

1

2
𝑀𝑣𝑎𝑣𝑔

2  where M is the molar mass in SI units (kg/mol).  

We can express the square root of the average velocity, known as the root mean speed:  

𝑣𝑟𝑚𝑠 = √
3𝑅𝑇

𝑀
 Eq. 19.4  (19.13)                           Root mean speed of a gas 

 

 In chemistry, you often see the term RT in many equations.  This term represents the 
thermal contributions to the total energy of a system. 

 The probability of a molecule in a system at temperature T having some energy Ei is 
described by a Boltzmann distribution: 

𝑝𝑖 = 𝑒−
𝐸𝑖
𝑅𝑇   Eq. 19.5  (1.31)     Probability of a species having energy Ei at T 

 

 **NOT ALL MOLECULES IN A SYSTEM HAVE THE SAME ENERGY!!  ENERGY IS NON-UNIFORMLY 
DISTRIBUTED!! (Statistical mechanics).   As T increases, molecules are more likely to have 
higher energies  (for example, the relationship between reaction rate and activation energy 
is described by this relationship). 

 
 
 
 

 
 
 
 
 
 

 
o In terms of velocities, some molecules in the system are moving slow, until they 

collide with high-speed particles, at which point, elastic momentum transfer occurs.  
This complete re-distribution of velocities occurs endlessly on a very short 
timescale. 
 

o The probability of a gas having a velocity in the range v+dv, p(v) is given by: 

                               𝑝(𝑣) = 4𝜋 (
𝑀

2𝜋𝑅𝑇
)

3

2
𝑣2𝑒−

𝑀𝑣2

2𝑅𝑇   Eq. 19.6     (19.33)          Maxwell-Boltzmann distribution 

Note: p(v) is a density function with units of s/m.  The total probability is the area under 
the curve of p(v) vs v, calculated by integrating p(v) over the range of velocities, which is 
unitless.    
 
o The most probable velocity of a gas is the velocity at which p(v) is a maximum, 

which is the value of v at which dp(v)/dv = 0: 



𝑣𝑚𝑜𝑠𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒 = √
2𝑅𝑇

𝑀
     Eq. 19.7    (19.44)        Most probable speed of gas molecule 

 

 The average velocity is not the same as the root mean speed, because v can be positive or 
negative, whereas v2 can never be negative.  The rms is more representative of the actual 
velocities in the system than the average, although the average velocity is employed in 
some calculations.  The average velocity is given by: 

�̅� = √
8𝑅𝑇

𝜋𝑀
     Eq. 19.8     (19.36)             Average velocity (not rms) 

 
 

 
 
 
 
 
 
 
 
 
 

 

 Class work:  Compare the most probable, average, and root mean speeds of H2 at 100oC. 
 

Collision Frequencies 

 Consider a particle moving along the x-direction through an area containing other particles.  Any 
particle whose center is within d of the center of the particle will be struck. 

 In three dimensions, the particle sweeps out a cylindrical volume with a cross sectional area of πd2.   
 
 
 
 
 
 
 
 

 The distance traveled by the particle between collisions is called the mean free path, λ, and depends 
on particle diameter, as well as the pressure and temperature of the volume element: 

𝜆 =
𝑘𝐵𝑇

𝜋𝑑2𝑃√2
      Eq. 19.9      (19.40) Mean free path of a single gas molecule 

 
o By knowing the mean free path, we can estimate the frequency of collision, which is 

essential to modeling reaction kinetics. 
o The collision frequency, z, defined as the average number of collisions of a particle per unit 

time, is given by: 
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=

4𝜋𝑑2(
𝑁𝑘𝐵𝑇

𝑉
)

√𝜋𝑘𝐵𝑚𝑇
=

4𝜋𝑑2𝜌√𝑘𝐵𝑇

√𝜋𝑚
    Eq. 19.10   (19.41)    

         Collision frequency 
 
 
In the derivation above, the term N/V is set equal to ρ, which represents the density of molecules per 
unit volume (m-3), m is the mass of a single molecule, and z has typical frequency units (s-1). 
 

o The total number of collisions per second per unit volume is depicted by an uppercase Z: 

𝑍 =
1

2
𝑧𝜌     Eq.  19.11     (Eq. 19.42)                        Total collisions per unit volume per unit time  

Note:  The term ½ is applied to account for duplicate collisions.  For example, when particle A 
strikes particle B, particle B also strikes particle A.  Mathematically, this would correspond to 
two distinct events, although physically, we recognize this as a single collision. 
 

o Example:  pg 684 (ex 19.7) 

For 1 mole:    ρ =
N

V
=

NA

.02271m3 =
2.65 x 1025

m3       

m =
(

.13129 kg

mol
)

NA
= 2.181 x 10−25kg    

z =
4πd2ρ√kBT

√πm
= 3.94 x 109s−1  

Z =
1

2
zρ =

5.22 x 1034

m3s
  

Total collisions = Z ∗ V =
1.19 x 1033

s
  

 
Effusion  
 

 Effusion is the rate of gas leakage out of a porous vessel (ex. A balloon).  It is typically a very slow 
process, but it is affected by particle velocity (and thus, temperature).  We define effusion as dN/dt, 
or the number of particles that pass through a hole of area A in time t.  We can say that:   
 

(
𝑑𝑁

𝑑𝑡
) 𝛼  (�̅� ) 

 
 

    
 

 
 

 
 

 We know that faster moving particles will escape more quickly out of a system.  If we apply the 
Maxwell-Boltzmann distribution to molecules moving in one-dimension (x):    

                 𝑓(𝑣)𝑥 = √
𝑚

2𝜋𝑘𝐵𝑇
𝑒 

−𝑚𝑣𝑥
2

2𝑘𝐵𝑇    Eq. 19.11    (19.32)     One-dimensional speed distribution function 

o The average velocity is then the integral of the function times the velocity from 0 to ∞, 
which yields: 



𝑣𝑥̅̅ ̅ = √
𝑘𝐵𝑇

2𝜋𝑚
   

o We can therefore evaluate the effusion rate of a gas in terms of either density or pressure 
for molecules escaping through a hole of area A 
 

 
𝑑𝑁

𝑑𝑡
= 𝐴𝜌√

𝑘𝐵𝑇

2𝜋𝑚
    Eq. 19.12a  (19.50)  Effusion rate of a gas as a function of molecular density  
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𝑁

𝑉
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𝑃
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1

2𝜋𝑚𝑘𝐵𝑇
     Eq. 19.12b   (19.51)     Effusion as a function of P 

 
o Graham’s law of effusion allows us to compare the rates of effusion between different 

gases.  In short: 

(𝑟𝑎𝑡𝑒 𝑜𝑓 𝑒𝑓𝑓𝑢𝑠𝑖𝑜𝑛) ∝ 1/√𝑀      Eq. 19.13    (19.57)    Relative Effusion rates of gases 
 

 Group problem:   19.56.    Then, use Graham’s law to predict the rate at which oxygen gas would 
effuse from the same container under the same condition. 

 

 That is, 2.021014 mercury atoms are escaping per second. 
 

𝑟𝑎𝑡𝑒 𝐻𝑔 𝑒𝑓𝑓𝑢𝑠𝑖𝑜𝑛

𝑟𝑎𝑡𝑒 𝑂2 𝑒𝑓𝑓𝑢𝑠𝑖𝑜𝑛
=

(
1

√200.59
)

(
1

√32
)

  
2.02 𝑥 1014

𝑥
=

√32

√200.59
 𝑥 = 5.05 𝑥 1015𝑠−1 

 
 

Diffusion 
 

 Diffusion is the passage of particles from one part of a system to another due to a concentration 
gradient. 
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 Diffusion is an example of a transport property, which describes the net movement of matter through 
a non-uniform medium.  Using the image above, let’s consider motion along the x axis through a 
barrier plane with area A.   We can describe the flow of particles by: 
 

                                          
𝑑𝑁1

𝑑𝑡
= −𝐷𝐴

𝑑𝑐1

𝑑𝑥
     Eq. 19.14    (19.52)                          Fick’s first law of diffusion 

 In the expression above, D is known as the diffusion coefficient and dc1/dx is the 
concentration gradient of particles P1 in the x-dimension.   The negative sign shows 
that diffusion occurs in the direction of decreasing concentration.  In other words, 
particles flow from high to low concentration. 

 There are two types of diffusion coefficients:  self-diffusion and mutual-diffusion 
coefficients. 

o Self-diffusion describes a gas diffusing through itself.  Mutual diffusion is the 
diffusion of two different gases into each other. 

                    𝐷𝑠𝑑 =
3

8𝑑2𝜌
√

𝑅𝑇

𝜋𝑀
      Eq. 19.15   (19.53)               Self-diffusion coefficient 

 

𝐷𝑚𝑑 =
3

8
√

𝑅𝑇

2𝜋𝜇
(

1

(𝑟1+𝑟2)2𝜌𝑡𝑜𝑡
)      Eq. 19.16   (19.54)            Mutual-diffusion coefficient 

In eq 19.16, the value of µ represents the reduced mass of P1 and P2 (𝜇 =
𝑚1𝑚2

𝑚1+𝑚2
) 

and ρtot is the total particle density per unit volume. 
 

 As gas particles diffuse, they do not travel in a straight path.  During the diffusion process, 
there are many collision which cause changes in trajectory.   However, the particles will 
eventually end up moving in the direction of lower concentration.   

o This path of motion is called the random walk.  Einstein determined an expression for 
the average displacement of a particle due to collisions and mean free paths.   

o While the average displacement in a given dimension is zero due to the equal 
likelihood of a particle moving in the positive or negative direction, the average of the 
square of the displacement is not zero because a squared value can never be 
negative. 
 
(Δ𝑥)𝑎𝑣𝑔

2 = 2𝐷𝑡      Eq.  19.17a     (19.55)    Einstein-Smoluchowski equation in 1D 

(𝑛𝑒𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)2 = 6𝐷𝑡       Eq. 19.17b   (19.56)                 In 3 
dimensions 
 

 Example:   19.9  pg 690.     

 Group work:   19.67.     Referring back to the previous example, what percentage of the total 
distance traveled is actual displacement from the starting position? 


