CHEM 310 Exam 3

Dr. Hanna

April 13, 2007

Honor Pledge:

In Part V of the Winthrop University Student Conduct Code, it is stated that "A fundamental tenet of all institutions of higher learning is academic honesty. ... Misrepresentation of someone else's work as one's own is a most serious offense in any academic setting. ... Academic misconduct includes but is not limited to providing or receiving assistance in a manner not authorized by the professor in the creation of work to be submitted for academic evaluation including papers, projects, and examinations ..."

By my signature below, I pledge that I did not commit academic misconduct (cheat) on this examination.

Printed Name		Signature	
	Part 1	/20	
	Part 2	/30	
	Part 3	/20	
	Part 4	/10	
	Part 5	/20	
	Total	/100	

15 A8 - 1522 (WS, L.L.)

Part 1: Nomenclature (20 pts)

Write IUPAC names for the following compounds (indicate stereochemistry where required):

Draw structures corresponding to the following IUPAC names:

1c. trans-1-Bromo-2-ethylcyclopentane

1d. 3-Methyl-2-buten-1-ol

1e. 3,3-Dimethylheptan-2,4-dione

Part 2: Provide the Starting Material, Reagent, or Product (30 pts):

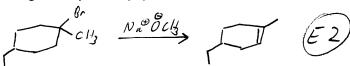
Provide the missing piece (starting material, reagent(s), or product(s)) in the box provided.

2a.
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3

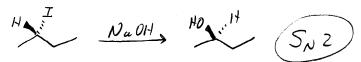
2e.
$$CH_{2}-Br \longrightarrow Mg$$

$$CH_{3} \longrightarrow Ether$$

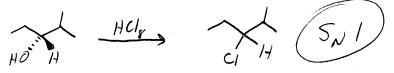
$$CH_{3} \longrightarrow CH_{2} \longrightarrow Mg$$


$$CH_{3} \longrightarrow CH_{3} \longrightarrow CH_$$

2g.
$$CH_2OH$$
 CrO_3 CH_3O^+ CrO_3 $C-OH$


Part 3: Mechanisms (20 pts)

Draw the chemical equations (with structures) described below and indicate whether the mechanism of the reaction is S_N2 , S_N1 , E2 or E1.


3a. 1-Bromo-4-ethyl-1-methylcyclohexane reacts with sodium methoxide (Na⁺ OCH₃) to give 4-ethyl-1-methylcyclohexene

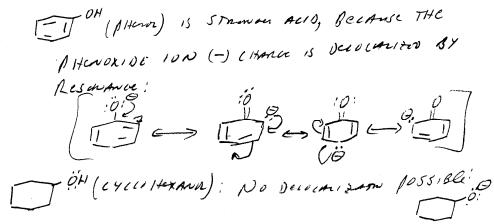
3b. (S)-2-Iodobutane reacts with sodium hydroxide to give (R)-butan-2-ol.

3c. (R)-2-Methylpentan-3-ol reacts with dry $\mathrm{HCl}_{(g)}$ to give racemic 3-chloro-2-methylpentane

00 %

Provide complete arrow-pushing mechanisms for the following transformations:

Part 4: Synthesis (10 pts)


Provide a synthesis of each of the following compounds <u>starting from the indicated</u> <u>compound</u> and any other reagents you need:

4b.
$$CH_3$$
 OH CH_3 OH

Part 5: General Questions (20 pts)

Provide answers to the following questions. Where applicable, draw structures to support your answers.

5a. The pK_a of cyclohexanol is approximately 16, while the pK_a of phenol is approximately 10. Indicate which compound is the stronger acid, and explain the reason for the difference in acidity.

5b. Rank the following compounds in order of S_N2 reactivity (1 = fastest, 4 = slowest). Explain your answer.

5c. Rank the following compounds in order of S_N1 reactivity. (1 = fastest, 4 = slowest). Explain your answer.

5d. Explain why a Grignard reagent cannot be prepared in the presence of water or alcohols.