1. Stepwise equilibrium constants ( $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$, etc.) describe individual steps in a sequential series of chemical reactions while overall equilibrium constants ( $\beta_{1}, \beta_{2}, \beta_{3}$, etc) describe net chemical reactions. Given the two step equilibrium below, determine the net equilibrium and an the overall equilibrium constant.

$$
\begin{array}{lr}
\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{AB} & K_{1}=\frac{[A B]}{[A][B]} \\
\mathrm{AB}+\mathrm{B} \rightleftharpoons \mathrm{AB}_{2} & K_{2}=\frac{\left[A B_{2}\right]}{[A B][B]} \\
++\ldots \rightleftharpoons & \beta_{2}=
\end{array}
$$

2. Look carefully at equation 16 on page 225 . Describe how each of the variables $\left(\mathrm{A}_{\text {tot }},\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]\right.$, and $\mathrm{M}_{\mathrm{tot}}$ ) can be determined.
3. Equations 18 and 19 , which describe how $\beta_{1}, \beta_{2}$, and $\beta_{3}$ will be determined, all necessitate that [A-] be known. How will you determine this value?
4. As you learned in General Chemistry, pKa values can be approximated by determining the pH at the $1 / 2$ equivalence point. How does this principle relate to this lab?
