Lab 7
Experiment 22 (p.219)

Amino Acid Complexes: Stability constants of Ni(glycinate)$_n^{(2-n)^+}$
Acid-Base Chemistry of Glycine

Glycine is an example of a zwitterion.

What is a zwitterion?

A molecule that contains a (+) and (-) electrical charge at different location within the molecule.
What is the pH of this solution?

HNO$_3$ is a Strong Acid!

HNO$_3$ \(\rightarrow \) H$^+$ + NO$_3^-$

\[
[H^+] = [HNO_3] = 0.005 \text{ M}
\]

\[
pH = -\log(0.005) = 2.3
\]

How will the pH respond when glycinate is titrated into the solution?
Glycinate Titration

What is the pH of this solution?

HNO₃ is a Strong Acid!

\[\text{HNO}_3 \rightarrow \text{H}^+ + \text{NO}_3^- \]

\[[\text{H}^+] = [\text{HNO}_3] \]

\[pH = -\log(0.005) = 2.3 \]

How will the pH respond when glycinate is titrated into the solution?
Glycinate Titration with Nickel

What is the pH of this solution?

0.1M KNO$_3$
5 mM HNO$_3$
5 mM Ni$^{2+}$

HNO$_3$ is a still a Strong Acid!

\[[H^+] = [HNO_3] \]

\[pH = -\log(0.005) = 2.3 \]

How will the pH response to glycinate titration differ with Ni$^{2+}$ in the solution?
Ni$^{2+}$-Glycinate Interactions

How will glycinate interact with Ni$^{2+}$?

MX$^+$

MX$_2$

MX$_3$
Ni$^{2+}$-Glycinate Interactions
Ni$^{2+}$-Glycinate Interactions

\[\beta_1 = \frac{[MA^-]}{[M^{2+}][A^-]} \]
\[\beta_2 = \frac{[MA_2^-]}{[M^{2+}][A^-]^2} \]
\[\beta_3 = \frac{[MA_3^-]}{[M^{2+}][A^-]^3} \]
The Effect of Ni\(^{2+}\) on pH

Consider the simple glycine (HA) dissociation reaction:

\[\text{HA} \rightleftharpoons \text{H}^+ + \text{A}^- \]

\[K_a = \frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]} \]

\[A_{\text{tot}} = [\text{A}^-] + [\text{HA}] \]

So why does Ni\(^{2+}\) influence this reaction?

Ni\(^{2+}\) preferentially binds to the base form (A\(^-\)) which alters the apparent \(K_a\) according to mass action (LeChatlier’s Principle)

\[A_{\text{tot}} = [\text{A}^-] + [\text{HA}] + [\text{MA}^+] + [\text{MA}_2] + [\text{MA}_3^-] \]
Equilibrium Theory Approach

What we know…..

M_{tot}, H_{tot} and A_{tot} at any point in the titration

Glycinate is your titrant

pH at any point in the titration

This is what you measure

$A_{tot} = [A^-] + [HA] + [MA^+] + [MA_2] + [MA_3^-]$

Equilibrium Expressions that describe these concentrations

$HA \rightleftharpoons H^+ + A^-$

$A^- + M^{2+} \rightleftharpoons MA^+$

$2A^- + M^{2+} \rightleftharpoons MA_2$

$3A^- + M^{2+} \rightleftharpoons MA_3^-$

$K_a = \frac{[H^+][A^-]}{[HA]} = 2.5 \times 10^{-10}$

$\beta_1 = \frac{[MA^-]}{[M^{2+}][A^-]}$

$\beta_2 = \frac{[MA_2]}{[M^{2+}]^2[A^-]}$

$\beta_3 = \frac{[MA_3^-]}{[M^{2+}][A^-]^3}$
Equilibrium Theory Approach

Fractional Saturation (ñ or θ)

The total number of ligands bound per metal ion

\[A_{tot} = [A^-] + [HA] + [MA^+] + [MA_2] + [MA_3^-] \]

[Bound] =

[Metal] =

\[\theta = \frac{[MA^-] + 2[MA_2] + 3[MA_3]}{M^{2+} + [MA^-] + [MA_2] + [MA_3]} \]

\[\theta = \frac{\beta_1[A^-] + 2\beta_2[A^-]^2 + 3\beta_3[A^-]^3}{1 + \beta_1[A^-] + \beta_2[A^-]^2 + \beta_3[A^-]^3} \]
Equilibrium Theory Approach

Our goal is to cast θ in terms of known values

$$\theta = \frac{\beta_1 [A^-] + 2 \beta_2 [A^-]^2 + 3 \beta_3 [A^-]^3}{1 + \beta_1 [A^-] + \beta_2 [A^-]^2 + \beta_3 [A^-]^3}$$

$$[A^-] = \frac{K^a_{H^+}}{[H^+]} (C_H + [OH^-] - [H^+])$$

$C_H \rightarrow [H^+]$ from original HNO$_3$ solution

$$\theta = \frac{A_{tot} - \left(1 + \frac{K^a_{H^+}}{[H^+]}\right) (C_H + [OH^-] - [H^+])}{M_{tot}}$$
How are pKa values approximated from a pH titration?

\[\text{pH @ } \frac{1}{2} \text{ Equivalence Point} \]

\[pH = pK_a + \log \frac{[A^-]}{[HA]} \quad \text{pH} \]

\[\theta = \frac{[HX]}{[X]_{tot}} \]
Graphical Approximation of K_n

\[\log K_p - \frac{1}{2} = \frac{\theta}{2} \]

\[pK_1 = -\log K_1 \]
\[pK_2 = -\log K_2 \]
\[pK_3 = -\log K_3 \]
Graphical Determination of β_n

$$\theta = \frac{\beta_1 [A^-] + 2 \beta_2 [A^-]^2 + 3 \beta_3 [A^-]^3}{1 + \beta_1 [A^-] + \beta_2 [A^-]^2 + \beta_3 [A^-]^3}$$

This expression can be rearranged to generate a less complex polynomial:

$$\frac{\theta}{(1 - \theta)[A^-]} = \frac{(3 - \theta)[A^-]^2}{(1 - \theta)} \beta_3 + \frac{(2 - \theta)[A^-]}{(1 - \theta)} \beta_2 + \beta_1$$

What happens at very low $[A^-]$?

$$\frac{\theta}{(1 - \theta)[A^-]} = \frac{(2 - \theta)[A^-]}{(1 - \theta)} \beta_2 + \beta_1$$
Graphical Determination of β_n

\[
\frac{\theta}{(1 - \theta)[A^-]} = \frac{(3 - \theta)[A^-]^2}{(1 - \theta)} \beta_3 + \frac{(2 - \theta)[A^-]}{(1 - \theta)} \beta_2 + \beta_1
\]

This expression can be further rearranged to generate a less complex polynomial:

\[
\frac{\theta - (1 - \theta)\beta_1[A^-]}{(2 - \theta)[A^-]} = \frac{(3 - \theta)[A^-]}{(2 - \theta)} \beta_3 + \beta_2
\]
Experimental Considerations

Prepare 200 mL of this solution

Solid

\[\text{H}_2\text{NCHC} \rightarrow \text{H}_2\text{O} \rightarrow \text{pH} \sim 7 \text{ Glycinate} \]

0.4 M

Nickel is a carcinogen! Ni salt will be massed in the fume hood

Titrate glycinate into Ni solution in 0.2 mL increments.

Record pH for every aliquot.

……Hope you liked Chemometrics…..
How to start your spreadsheet

\[
\frac{\theta}{(1-\theta)[A^-]} = \frac{(3-\theta)[A^-]^2}{(1-\theta)} \beta_3 + \frac{(2-\theta)[A^-]}{(1-\theta)} \beta_2 + \beta_1
\]

What do you need to solve for \(\beta_n \)?

\[
[A^-] = \frac{K_a}{[H^+]} (C_H + [OH^-] - [H^+])
\]

\[
\theta = \frac{A_{tot} - \left(1 + \frac{K_a}{[H^+]}\right)(C_H + [OH^-] - [H^+])}{M_{tot}}
\]

Injection #	Volume	\(A_{tot} \)	pH	\([H^+]\)	\([OH^-]\)	\([A^-]\)	\(\theta \)