Experiment 6: The Metal-Arene Complex 1,3,5-(CH₃)₃C₆H₃Mo(CO)₃ Text #16 CHEM 531

Reminders

- Due this Thursday (3/5):
 - Formal Report: Experiment 4
 - Borane-Amine Complex Synthesis
 - Report Experiment 5
 - Molecular Modeling
 - Prelab: Experiment 6
 - Metal Arene Complex
- Due next week (3/12):
 - Report: Experiment 6
 - Metal Arene Complex
 - Prelab: Experiment 7
 - Amino Acid Complexes (Text #22)
- Team Project Ideas
 - Due to Dr. Grossoehme by 5 pm Friday, March 13

Organotransition Metal Chemistry

- Organometallic compounds
 - Compounds containing a C-[M] bond
 - Grignard reagents (R-MgBr)
 - Organolithium reagents (R-Li)
- Organotransition metal compounds
 - [M] = "B" group (3 12) metal
 - Gilman reagents (R₂CuLi)
 - Important to common organic transformations
 - Coupling reactions (Suzuki, Heck)
 - Ring-closing metathesis (RCM)

- 18 electron rule
 - Kr configuration: [Ar] 4s²3d¹⁰4p⁶
 - 18 electrons in "valence" shell
 - Stable configuration for period 4 and higher elements
- Transition metal configurations
 - "Coordinatively unsaturated"
 - Zr: [Ar] 5s²4d² (4) ("early" TM)
 - Fe: [Ar]4s²3d⁶ (8)
 - Pd: [Ar]4d¹⁰ (10) ("late" TM)

- TM achieve stable configuration by "coordination" with "ligands"
 - $\text{Fe}[\text{H}_2\text{O}]_6^{2+}, \text{Co}[\text{NH}_3]_6^{3+}$
 - Called a "coordination compound" or "metal complex"
- Organometallic compounds
 - Coordination compounds containing a [M]-C bond
 - Include π -bonding ligands (butadiene, cyclopentadienyl (Cp))
 - M-L bonds are more "covalent" than typical coordination compounds
 - Usually have a substantial π component
 - Perturbs the electronic structure of the ligands \rightarrow generates reactivity

Organotransition Metal Compounds

An **organometallic** compound: contains **metal-carbon** bonds

Metal-ligand complexes can be viewed as **Lewis acid-base adducts**:

Metal: Lewis acid (e- acceptor) Ligands: Lewis bases (e- donors)

Ligands donate e- to form M-L **coordinate covalent** or **dative** bonds.

- Common ligands
 - Neutral (L)
 - PR₃, NR₃, CO donate lone pair to metal
 - $[M]-PR_3 \qquad [M]-NR_3 \qquad [M]-C \equiv O$
 - PR₃, NR₃ are "spectator" ligands
 - » Remain unchanged during reactions
 - » Influence steric and electronic properties of the complex
 - π -Bonds donate π -electrons to metal

- Common ligands
 - Negative (X)
 - R^- , H^- , RO^- , R_2N^- donate lone pair to metal

- Hapticity
 - No. of atoms in a single ligand bound to metal
 - Indicated by η^{x}

Organotransition Metal Compounds Structure – 18 Electron Rule

Octet Rule

- Applies to main group compounds

- 18 Electron Rule
 - Applies to metal complexes
 - Metal valence e⁻ ("d-count") + ligand e⁻
- Electron-counting
 - Ionic Model
 - Metal "d-count" = (group # oxidation #)_{Metal}
 - X ligands = (-) charge, 2 e donors
 - L ligands = (0) charge, 2 e donors

Organotransition Metal Compounds Structure – 18 Electron Rule

- (CH₃)Mn(CO)₅
 - Mn oxidation state
 - 1 'X' ligand = -1 charge
 - 5 'L' ligands = 0 charge
 - Oxidation state of Mn = +1
 - Mn d-Electron count
 - Neutral Mn: d⁷ (determined from periodic table group number)
 - Mn⁺¹: d⁶
 - Total electron count
 - Mn⁺¹: d⁶
 - 1 'X' ligand = 2e
 - 5 'L' ligands = 10e
 - Total e = 18e

Counting Electrons in [1,3,5-C₆H₃(CH₃)₃]Mo(CO)₃

1) Determine the charge on Mo and its total # of ve-

a. Consider **charges on ligands**: CO and mesitylene are both neutral molecules....

Mo is neutral (0 oxidation state)

b. Determine total # of Mo valence e-

[Kr] $5s^2 4d^4 - 6$ valence e- ("d⁶")

2) Add up the number of e- donated by the ligands:

CO ligands: Each donates 2 electrons

 η^{6} - C₆H₃(CH₃)₃: Donates 6 electrons (from 3 π bonds) Coordinated

through 6 atoms

6 Mo valence $e_{-} + 6 + 3(2) e_{-}$ donated by ligands = 18 e_{-} total

- Back-Bonding
 - Electron-donation from metal to ligand
 - Usually d $\rightarrow \pi^*$
 - Stabilizes metals in low oxidation states
- VB model

MO model

- Evidence for Back-Bonding
 - IR stretching frequency of CO
 - "Free" CO: 2154 cm⁻¹

- Lower $\nu_{\text{CO}},$ more backbonding
 - Stronger M-CO bond

- Evidence for Back-Bonding
 - IR stretching frequency of CO
 - "Free" CO: 2154 cm⁻¹
 - $Ni(CO)_4$ $v_{CO} = 2057 \text{ cm}^{-1}$
 - $Co(CO)_4^ v_{CO} = 1886 \text{ cm-1}$
 - $Fe(CO)_4^{-2}$ v_{CO} = 1785 cm-1
 - Greater anionic charge on metal in an isoelectronic series → more back-bonding
- Generally: more electron density on metal → more back-bonding

Synthesis of $[1,3,5-(CH_3)_3C_6H_3]Mo(CO)_3$

 $Mo(CO)_6 + C_6H_3(CH_3)_3 \rightarrow [1,3,5-C_6H_3(CH_3)_3]Mo(CO)_3 + 3 CO$

N₂ atmosphere

A few questions to consider:

 This reaction is more successful in mesitylene than it is in benzene. Please suggest an explanation.

Mesitylene is a better Lewis base. Methyl groups are electrondonating substituents.

- 2) Why do you think this reaction is thermodynamically favorable?
 - Entropically favored: products are more disordered (3 mol gas)
 - Product is expected to be stable (but so is $Mo(CO)_6 \dots$)
- 3) Why do you think the reaction must be performed under N_2 ?

O₂ in air reacts with CO (forming CO₂)

Characterization of [1,3,5-(CH₃)₃C₆H₃]Mo(CO)₃

- IR spectroscopy
 - Focus on CO stretches near 2000 cm⁻¹
 - 1750 2150 cm⁻¹
- Total CO stretches? 3 (1 v_{sym} , 2 v_{anti})
- Observable CO stretches? 2 $(v_{sym} > v_{anti})$

Determining Molecular Geometry

• OC-Mo-CO bond angle (θ):

$$\frac{I_{sym}}{I_{anti}} = \frac{3\cot^2\left(\frac{\theta}{2}\right) - 1}{4}$$

- Use absorbance (not %T)
- Symmetric vs. antisymmetric stretch – Which is which?
- Intensity = peak area

Procedural Notes

- 1. SAFETY: Metal carbonyl compounds (and CO, itself) are toxic. Wear gloves and keep all materials under your benchtop hood.
- 2. You will use a Variac (rheostat) for temperature control on **120-V setting**.
 - Turning the large knob on top of the Variac changes the voltage sent to the heating mantle ("100" means 100% of 120 V).
 - Start at a setting of ~60-70%.
 - You want to achieve reflux (at ~165 °C) quickly, but not overshoot it.
- 3. Connect the N₂ tank directly to the top of your condenser (no bubbler), using the gas to flush the apparatus before and after reaction.
- To recover the product, use a Pasteur pipet to add the reaction mixture (avoiding undissolved starting material, etc.) to cold hexane. [This is a change from your manual.] Then proceed with filtration, washing with hexane.

Formal Report Due 3/12/15

Be sure to include:

- A sketch and description of the apparatus
- Your yield and calculations of percent yield, as well as a discussion of likely causes for low yield, if necessary.
- **Group Theory analysis** showing the number of predicted IR-active CO vibrations and the number of CO bands expected in the spectrum
- Your measured IR spectrum and calculations of C-Mo-C bond angles between CO groups
- Comparison of your experimentally determined IR spectrum and C-Mo-C angles with those obtained from modeling
 - Also include some description of modeling throughout (methods used, etc.)