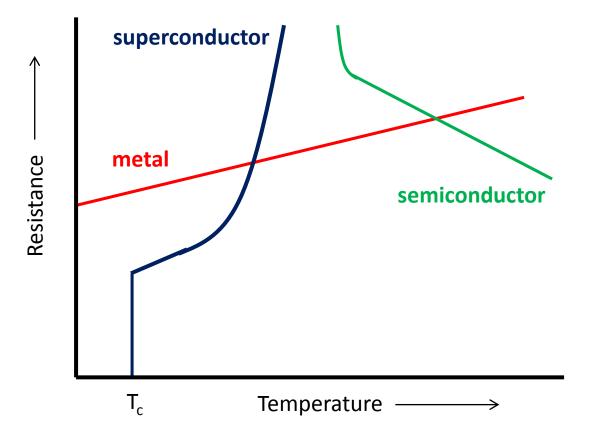
Exp. 2: The 1-2-3 Superconductor YBa₂Cu₃O₇ (Text #1)

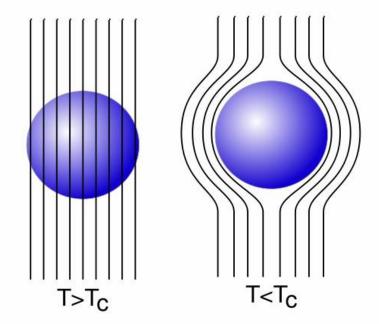
This Thursday:

• Perform high-temperature, solid-state reaction to prepare YBa₂Cu₃O_x

Next Thursday:

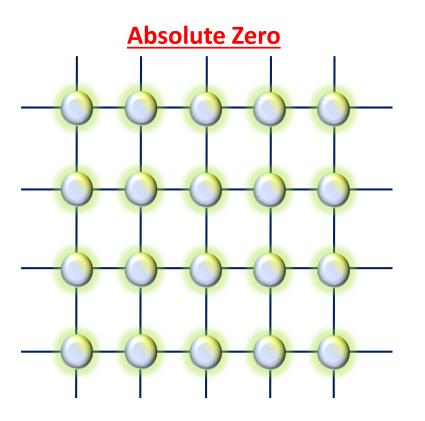

- Determine product stoichiometry ("x")
 - based on lost mass after heating
 - from an iodometric titration
- Test your product for superconductivity

Superconductors

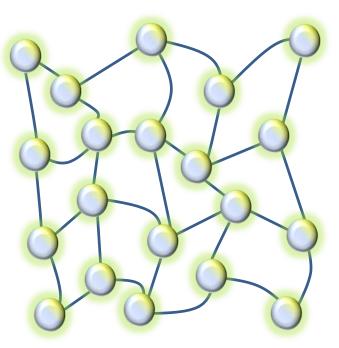

- A material that exhibits zero electrical resistance when cooled below its critical temperature (T_c).
 - This transition to zero resistance is immediate upon reach T_c
 - Because superconductors have zero resistance, current can be maintained in superconducting rings indefinitely
- "High Critical Temperature Superconductors" (T_c > 77K) are of particular interest because the low cost refrigerant N₂(L) can be used to maintain the superconducting state.

Effects of Temperature on Electrical Resistance

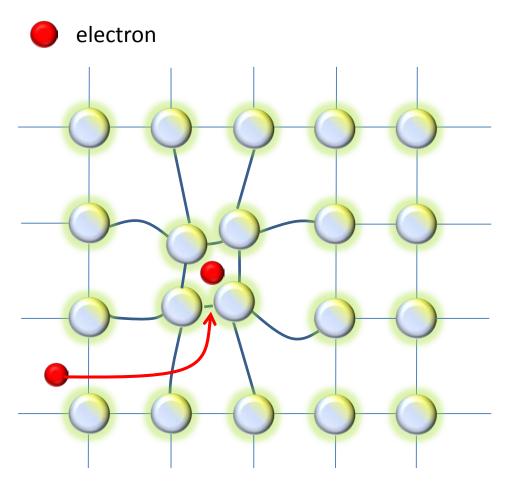
```
High resistance = poor current = poor conductivity
```



Meissner Effect



Phonons

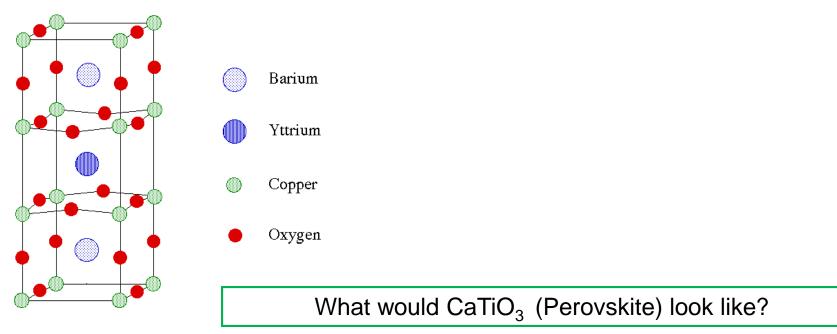

High Temperature

- High temperature results in the creation of high energy <u>phonons</u>, packets of vibrational energy
- Phonons create distortion. Electrons migrating through a lattice collide with moving atoms, causing a loss of momentum, and thus, conductivity.

Cooper Pairs

- Cooper pairs are more mobile than individual electrons because the distortion caused by the first electron will attract back the 2nd should it be scattered out of its path.
- Thus, formation of Cooper Pairs leads to superconductivity.
- Higher temperatures increase the scattering effect due to oscillation of lattice atoms, causes Cooper Pairs to separate, raising the resistance.

YBa₂Cu₃O₇


- Type II Superconductor
 - Made from an alloy, as opposed to a pure metal
- Superconductivity is observed at T ≥ 92 K
- Structure is that of a "defect perovskite"
 - Similar to the standard perovskite structure (ABO₃) but some atoms are missing
 - Copper ions occupy the A sits
 - Both Ba²⁺ and Y³⁺ occupy the B sites
 - The ratio is not 1:1:3 because some oxygen atoms are missing
 - Coordination numbers of 8 for Y, 10 for Ba, and either 4 or 5 for Cu
 - Orthorhombic

Stoichiometry of YBa₂Cu₃O_x: Determining x

 $\frac{1}{2} Y_2 O_{3(s)} + 2 BaCO_{3(s)} + 3 CuO_{(s)} \rightarrow YBa_2 Cu_3 O_{x(s)} + 2 CO_{2(g)}$

What value of 'x' is expected from stoichiometry? 6.5 Desired for superconductivity? 7

Unit cells of $YBa_2Cu_3O_x$ and $CaTiO_3$

http://imr.chem.binghamton.edu/labs/super/superc.html

Synthesis of YBa₂Cu₃O₇

- Solid state reactions are slow!
 - Atoms in crystals do not diffuse readily
 - At very high temperatures, the atoms can be forced to migrate quickly enough to form new bonds on a reasonable time scale
- Synthesis will be carried out at 900 C in the tube furnace under flowing O₂.
 - Why is O_2 required?
- Accuracy is very important. If the metals are not present in a 1:2:3 ratio, or if the materials are not well mixed, the product will NOT be superconductive.