2/6/12

Upcoming Deadlines Due 2/7: Superconductor lab analysis **Due 2/14 or 2/21:** K₂S₂ O₈ formal report

Exp. 3: Electrolytic Synthesis of K₂S₂O₈ (Text #9)

What does "electrolytic" mean?

There are two broad "types" of electrochemical cells, galvanic (also called voltaic) and electrolytic...

A galvanic cell employs a spontaneous electrochemical reaction to generate electric current.

In an electrolytic cell, current is supplied to drive a non-spontaneous electrochemical reaction.

An Important Industrial Electrolysis: The Hall-Heroult Process

Aluminum is recovered from aluminum ore $(Al_2O_3, alumina)$ in this electrolytic process, the only industrial method for Al smelting.

Prior to its development (1886), Al was thought of as a precious metal due to the difficulty and cost of its recovery.

$$2 \text{ Al}_2 \text{O}_3 \text{ (in cryolite)} + 3 \text{ C} \text{ (s)} \rightarrow 4 \text{ Al} \text{ (l)} + 3 \text{ CO}_2 \text{ (g)}$$

What is oxidized and what is reduced in this process?

Write the half-reactions occurring at the anode and cathode.

anode (ox.): $6 O^{2-} + 3 C \rightarrow 3 CO_2 + 12 e^{-1}$

cathode (red.): $4 \text{ Al}^{3+} + 12 \text{ e}^{-} \rightarrow 4 \text{ Al}$

Electrolytic Synthesis of K₂S₂O₈

$$2 \text{ HSO}_{4^{-}(aq)} \rightarrow S_2 O_8^{2^{-}(aq)} + H_{2(g)}$$

S is oxidized anode (ox.):
$$2 \text{ SO}_4^{2-} \rightarrow \text{ S}_2\text{O}_8^{2-} + 2 \text{ e}$$
-
H⁺ is reduced cathode (red.): $2 \text{ H}^+ + 2 \text{ e}^- \rightarrow \text{ H}_2$

How can we theoretically predict the (non)spontaneity of this process?

Predicting Spontaneity of Electrochemical Reactions

We use cell potentials (E_{cell}) to predict spontaneity. What values of E_{cell} correspond to a spontaneous reaction?

$$\Delta G = -nFE_{cell}$$

 $F = 9.6485 \times 10^4 \text{ C/mol e}$ n = moles of electrons

Spontaneous reactions have positive values of E_{cell} ($\Delta G < 0$).

We typically use E° values, so that we can employ standard potentials for half-reactions. T = 25 °C; P = 1 bar; Conc. = 1 M

anode (ox.): $2 \text{ SO}_4^{2-} \rightarrow \text{ S}_2 \text{O}_8^{2-} + 2 \text{ e}$ - $E^\circ = -2.05 \text{ V}$ cathode (red.): $2 \text{ H}^+ + 2 \text{ e} \rightarrow \text{H}_2$ $E^\circ = + 0.00 \text{ V}$ $E^\circ_{\text{cell}} = \frac{-2.05 \text{ V}}{-2.05 \text{ V}; \text{ Non-spont.}}$

Notes for working with $E_{1/2}$ values:

- When you change reaction direction (for oxidation), change sign of E°
- *E*° does <u>not</u> depend on amount. Do <u>not</u> change the magnitude of *E*° if you change coefficients of the half-reaction.

A Potential Problem to Overcome . . .

The standard cell potential for our desired reaction is a rather large negative value, indicating that this process is significantly unfavorable.

What challenge does this cause for completion of this **aqueous** reaction?

Competing oxidation of water:

anode (ox.): $2 H_2 O \rightarrow O_2 + 4 H^+ + 4 e^- E^\circ = -1.23 V$ Less negative than our desired oxidation (-2.05 V) \rightarrow more favorable!

Fortunately, oxidation of water is very slow; much higher voltages are required to achieve reasonable reaction rates. We will use conditions that minimize the rate of water oxidation (maximizing the *overvoltage* required).

• Pt wire electrodes

• High current density (1.0 A/cm²)

- Cold temperature (ice bath)
- High concentration of reactant HSO₄⁻

The Electrolysis Cell

Calculating Theoretical Yield (Current Efficiency)

You will pass a known current through the solution for a measured length of time. How can you determine the theoretical yield from this information?

Theor. =
$$\begin{pmatrix} Current \\ A=C/s \end{pmatrix}$$
 × $\begin{pmatrix} Time \\ s \end{pmatrix}$ ÷ $\begin{pmatrix} 96 \ 485 \\ C/mol \ e- \end{pmatrix}$ × $\begin{pmatrix} 1 \ mol \ K_2S_2O_8 \\ 2 \ mol \ e- \end{pmatrix}$

$$\times \left(\frac{270.3118 \text{ g}}{1 \text{ mol } \text{K}_2 \text{S}_2 \text{O}_8} \right) = \text{g } \text{K}_2 \text{S}_2 \text{O}_8$$

Testing the Oxidizing Ability of K₂S₂O₈

Once your synthesis is complete, you will complete two sets of four reactions (8 total) to compare the oxidizing agent $K_2S_2O_8$ to the more common oxidizer H_2O_2 .

Reactants:

- 1) Acidified KI
- 2) $MnSO_4 \cdot H_2O$ in acid, with silver nitrate added
- 3) $Cr_2(SO_4)_3 \cdot xH_2O$ in acid, with silver nitrate added
- 4) AgNO₃

For each reaction, you will:

- a) Write the balanced overall reaction and predict whether it should be spontaneous.
- b) Record your observations. Did you observe a spontaneous reaction?

Procedural Notes

- 1. Saturated KHSO₄ has been made. Keep it in the ice bath at all times.
- 2. Handle the electrodes **carefully**! Tape leads in place to avoid unnecessary strain/bending of Pt wire.
- 3. Be certain that your power supply can provide the current you calculate for your set up. You may have to adjust the length of anode in solution.
- 4. Get your set-up checked before turning on the power supply.
- 5. Be sure to <u>record the time when you begin and stop the electrolysis</u>. Maintain your ice bath during reaction and maintain constant current.
 - a) Current will eventually drop when HSO_4^- is depleted.
- 6. Perform your reactions with $K_2S_2O_8$ and H_2O_2 in test tubes. Remember that "spontaneous" does not necessarily mean "fast."

Formal Report

Be sure to include:

- A sketch of the electrolysis cell showing connections to power supply
- Calculation of current required for ~1 amp/cm² current density
- Calculation of theoretical yield, actual yield, and current efficiency
- Half- and net reactions for each of 8 trials performed include standard potentials and indicate whether the overall reaction should be spontaneous
 - Discuss whether your results are consistent with these calculations. Did you observe reactions in those cases where they were expected to occur? How were your observations different for K₂S₂O₈ and H₂O₂?
 - In your lab manual, the authors suggest that the oxidation of Ag⁺ to Ag³⁺ assists in the oxidation of Mn²⁺ and Cr³⁺ by $S_2O_8^{2-}$ (pp. 96-97). Are your results consistent with this statement? (Can H₂O₂ oxidize Ag⁺ to Ag³⁺?)