Biochemistry Lab

Protein Purity Assessment and Identification

Coomassie Staining

How does Coomassie interact with proteins?

Coomassie Staining

Benefits

Limitations

Western Blotting 2 3 1. Transfer – Block 2. Apply Primary Antibody 3. Apply Secondary Antibody

Benefits

Limitations

Soft Ionization Techniques

Electrospray Ionization (ESI)

•Aqueous sample introduced to

metal capillary

- •High voltage (2000-4000 V) applied
- •Released to vacuum
- •Desolvation of aerosol leaving highly charged ions

Matrix Assisted Laser Desorption Ionization (MALDI)

- Aqueous sample is cocrystallized on a metal surface with a Matrix
 Intense Laser beam is directed toward sample/matrix mixture desorption
 Matrix absorbs the energy and is ionized
- •Some of the charge is transferred to the analyte 7

Separation Techniques

Quadrupole

Flight Tube

•Four rods are arranged opposite each other and connected electronically

•Voltage applied to each rod is carefully regulated

•The trajectory of a charged particle is influenced by the electric field

•Molecules separate by the time it takes for them to travel from the ion source to the detector

•Resolution is dependent on tube length (limits resolving power)

•Reflectron enhances the resolution₈

Ideal Pairs

ESI-QMS

MALDI-TOF MS

Other Applications of MS

Chamber 2

Lactate Dehydrogenase

Lactate Dehydrogenase

In lab this week

- 1. Determine protein concentration two ways:
 - Bradford Assay (coomassie staining)
 - Abs₂₈₀
- 2. Quick Enzyme Activity Assay
 - Prepare 3 dilutions of your enzyme:
 - 1:2, 1:3, 1:4
 - In 4 separate tubes, mix together:
 - 900 μ L Assay Buffer (this is your lysis buffer)
 - 33 μL NADH
 - 33 µL Pyruvate
 - 33 μ L Enzyme (undiluted, 1:2, 1:3, or 1:4)
 - Monitor Abs₃₄₀ over 2 minutes
 - Pick the dilution that gives you a D Abs₃₄₀ ~ 0.5 over 1 minute – you'll use this dilution in subsequent weeks