Biochemistry Lab

Cloning-1 Polymerase Chain Reaction and Endonucleases (Restriction Enzymes)

Basics – the Central Dogma

Molecular Cloning

• What do we mean by "cloning"?

Manipulating the genetic information present in an organism to give it new characteristics or function

- As a society, why would we want to do this? *Make farming easier/more efficient Enhance nutrition value of food*
- As Biochemists, why would we want to do this?

Take advantage of easily manipulated cells to increase protein yield.

Overall Goal

Overall Goal

Plasmid DNA

pET-28a(+) sequence landmarks	
T7 promoter	370-386
T7 transcription start	369
His•Tag coding sequence	270-287
T7•Tag coding sequence	207-239
Multiple cloning sites	
(BamH I - Xho I)	158-203
His•Tag coding sequence	140-157
T7 terminator	26-72
<i>lacI</i> coding sequence	773-1852
pBR322 origin	3286
Kan coding sequence	3995-4807
f1 origin	4903-5358

The maps for pET-28b(+) and pET-28c(+) are the same as pET-28a(+) (shown) with the following exceptions: pET-28b(+) is a 5368bp plasmid; subtract 1bp from each site beyond *Bam*H I at 198. pET-28c(+) is a 5367bp plasmid; subtract 2bp from each site beyond *Bam*H I at 198.

Plasmid DNA

Т	7 promoter primer #69348-3				
pET upstream primer #69214-3	T7 promoter	lac operator	Xbal	rbs	
AGATCTCGATCCCGCGAAA	TTAATACGACTCACTATAGGGG	GAATTGTGAGCGGATAACAA	TTCCCCTCTAGAAATAA	TTTTGTTTAACTTTAAGAAGGA	GA
_ <u>Ncol</u> TATACCATGGGCAGCAGCC MetGlySerSerH	His+Tag ATCATCATCATCATCACAGCAG isHisHisHisHisHisSerSe	GCGGCCTGGTGCCGCGCGG erGlyLeuValProArgGly	<u>Ndel</u> <u>Nhel</u> AGCCATATGGCTAGCAT SerHisMetAlaSerMe	T7•Tag GACTGGTGGACAGCAA •tThrGlyGlyGlnGln	
<u>BamiHlEco</u> F ATGGGTCGCGGATCCGAAT MetGlyArgGlySerGluP	RI <u>Saci _ Sali <mark>Hind III</mark> TCGAGCTCCGTCGACAAGCTTG</u> heGluLeuArgArgGlnAlaCy	Eagl thro Notl Xhol SCGGCCGCACTCGAGCACCA /sGlyArgThrArgAlaPro	Mis•Tag His•Tag CCACCACCACCACTGAG ProProProProLeuAr	ATCCGGCTGCTAACAAAGCCC gSerGlyCysEnd	pET-28a(+)
GGTCGGGATCCGAATT GlyArgAspProAsnS	CGAGCTCCGTCGACAAGCTTGC erSerSerValAspLysLeuAl	CGGCCGCACTCGAGCACCAC IaAlaAlaLeuGluHisHis	CACCACCACCACTGAGA HisHisHisHisEnd	TCCGGCTGCTAACAAAGCCC	pET-28b(+)
GGTCGGATCCGAATTC GlyArgIleArgIleA	GAGCTCCGTCGACAAGCTTGCG rgAlaProSerThrSerLeuAr	GGCCGCACTCGAGCACCACC gProHisSerSerThrThr	ACCACCACCACTGAGAT ThrThrThrThrGlull	CCGGCTGCTAACAAAGCCC eArgLeuLeuThrLysPro	pET-28c(+)
	Bpu1102		T7 terminator		
GA AAGG AAGC TGAG TTGG C	TGCTGCCACCGCTGAGCAATAA	AC TAGC ATAACCCC TTGG GG	CCTCTAAACGGGTCTTG	AGGGGTTTTTTG	
	T7 terminator prime	er #69337-3			
	pET-28a	-c(+) cloning/exp	ression region		

Polymerase Chain Reaction

Role: Amplify a DNA sequence

Total copies per unit of template $= 2^n$

So what do we need to carry out a PCR Reaction"?

- 1. Template DNA
- Oligonucleotides Also called "primers" the sequence of these are critical to select the proper region of the template to amplify
- 3. dNTPs (dATP, dGTP, dCTP, dTTP) monomers that build the polymer
- 4. DNA Polymerase the enzyme that catalyzes the polymerization reaction
- 5. Proper solution conditions (buffer, salt, etc.)

Digestion Overview

- HindIII
 - ${}^{5'} \cdots A A G C T T \cdots {}^{3'}$ ${}^{3'} \cdots T T C G A A \cdots {}^{5'}$

Ndel

$5' \dots C A T A T G \dots 3'$ $3' \dots G T A T A C \dots 5'$

Ligation

• Insert DNA into plasmid

• Transformation of DH5α *E. coli* cells

What's in a Primer?

This is the part of the PCR reaction that you get to control – and the easiest way to make a PCR reaction fail!

Primers need to "Bracket" the target DNA

Requirements:

- Specificity
 - Correct Sequence!
 - Aiming for Tm~60°C
- Directionality
- Include "add-ons".
 - Probably need to include restriction enzyme sequences
 - Start or stop codon?
 - Protein "tag"

In Lab

- Set up a PCR reaction to amplify the LDH gene
 - Be prepared to do this quickly the PCR reaction takes 1.5 hours
 - Always keep enzymes on ice
- Column purify (mini-prep) pET28 from *E.coli:DH5* α ::*pET28a*
- Column purify your PCR sample
- Determine the concentration of your two samples using the NanoDrop
- Save 5µL of your purified PCR
- Set up two separate digestion reactions (using BamHI and HindIII):
 - pET28a
 - LDH

Outside of Lab

Before Lab

- Complete the PreLab assignment this will include exploring the sequence of the pET28 plasmid. I encourage you to download the <u>ApE program</u>. You'll also be designing a set of primers to amplify a target DNA sequence. <u>You may want to use the tool here to help.</u>
- Know exactly what you'll be doing if you are unprepared, you will not finish on time.
- Download the protocols in the resources link on the webpage these need to be copied or pasted in your lab notebook!

After Lab

- Think critically about what you did in lab. Understand the molecular underpinning of the reactions you conducted. This is all a very important part of your Introduction
- Begin writing your Introduction and Methods section these are each upcoming assignments.