
# Some Interesting Nutritional Biochemistry of Sugars

### The Fructose Paradox: "Sweet Poison"



Some sugars are good at stimulating a physiological response in blood sugars, others are not

Glycemic Index is a measure of this: High GI = sharp spike in blood glucose levels Low GI = slow effect on blood glucose levels

Why is this important? Fairly complex, but basically, blood sugar is the body's main supply of energy.

High blood glucose levels → increased insulin production (a hormone produced by your pancreas)
If high levels of insulin are maintained, insulin resistance will develop.
Welcome to Type 2 Diabetes.

Low GI foods result in a slow and sustained increase in blood glucose  $\rightarrow$  lower demands on insulin production.

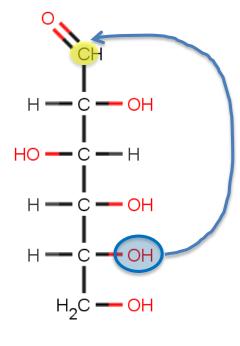
### Forms of Carbohydrates

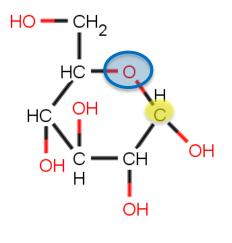
#### Monosaccharides

- The simplest form of sugars
- Found in small amounts in fruit more abundant in ripe fruit
- The 'sweetest' form of sugar

#### **Disaccharides**

- Two sugar units linked together
- Common form of sugar in a lot of food.
- Examples are cane sugar (sucrose) and dairy sugar (lactose)


#### **Oligosaccharides and Polysaccharides (mid to low GI)**


- Long chains of sugars
- Starch and fiber are good examples

### Forms of Carbohydrates

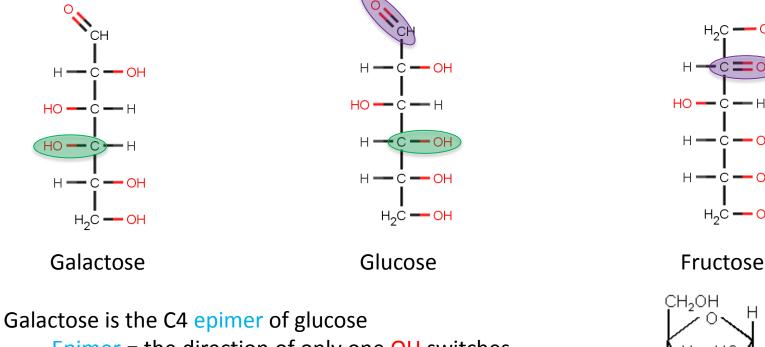
#### Monosaccharides

- The simplest form of sugars
- Aldose vs. Ketose
- Can exist in two forms: linear and cyclic

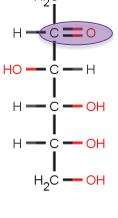


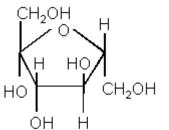





Linear

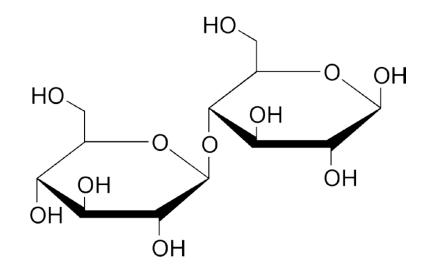
### Forms of Carbohydrates


#### **Monosaccharides**


- The simplest form of sugars
- Can exist in two forms: linear and cyclic •
- Common monosaccharides are all related to glucose

Try drawing mannose, the C2 epimer of glucose.




Epimer = the direction of only one OH switches



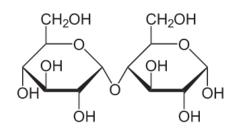


### Disaccharides

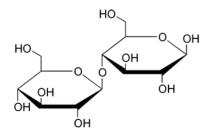




Maltose (from starch)


 $\alpha$ -glucose (1 $\rightarrow$ 4)  $\beta$ -glucose

Cellobiose (from cellulose)

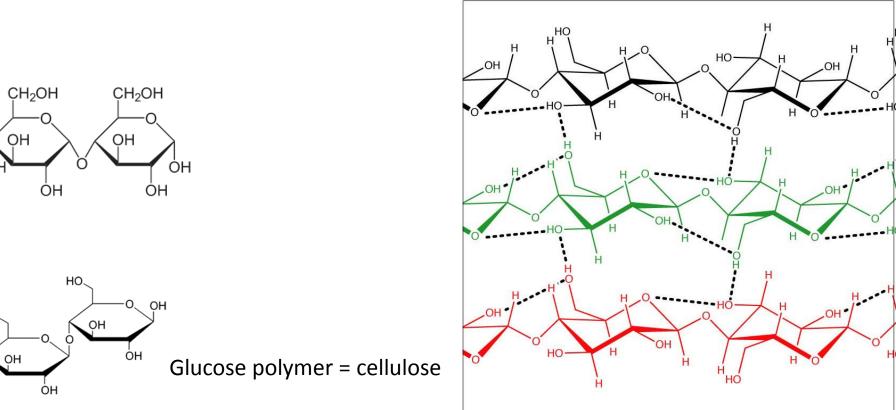

 $\beta$ -glucose (1 $\rightarrow$ 4) β-glucose

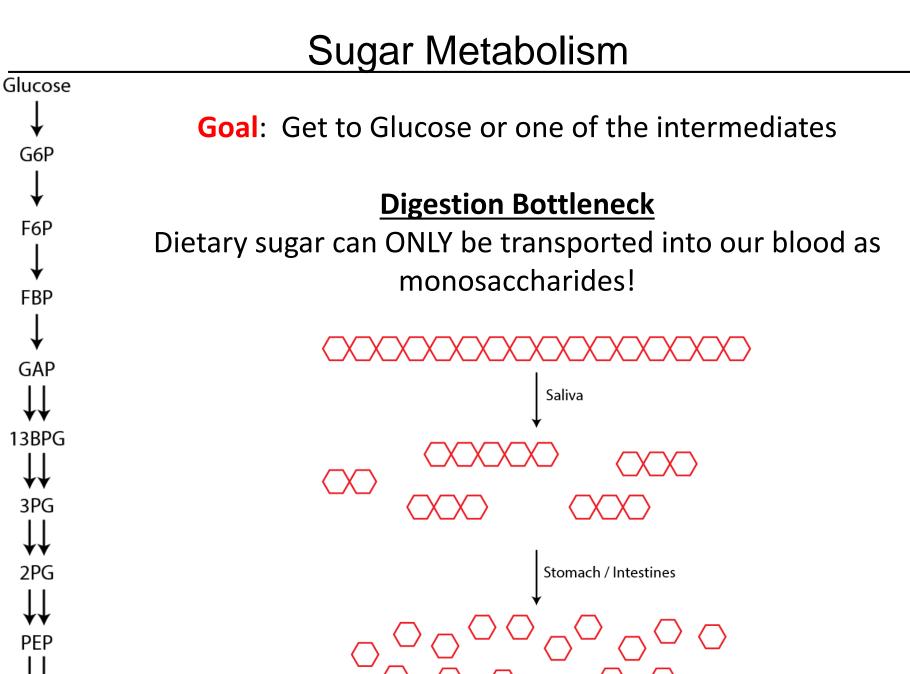

### Oligosaccharides

- Polymers of sugar
- Many examples that have very subtle chemical differences but vastly distinct chemical properties



Glucose polymer = starch




• Polymers of sugar

HO

 Many examples that have very subtle chemical differences but vastly distinct chemical properties Non-metabolizable forms of oligosaccharides are collectively known as fiber





Pyruvate

### Sugar Metabolism – the role of gut bacteria

Glucose

G6P

F6P

FBP

GAP

13BPG

3PG

2PG

PEP

Pyruvate


Not all oligosaccharides are easily metabolized!

- Enter your gut microbiota These bacteria play an absolutely essential function in health
- Digest foods that the stomach and intestine have not been able to
  - Helps with the production of vitamins (B and K)
  - Prevents aggressive and dangerous bacteria from colonizing in your stomach
- Plays an important role in the immune system (barrier effect)

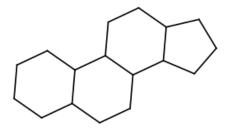
Prebiotics: foods that are fermentable by your gut bacteria (fiber)

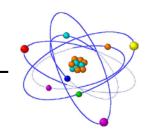
### The Role of Fats and Cholesterol

### 1. Biological Membranes

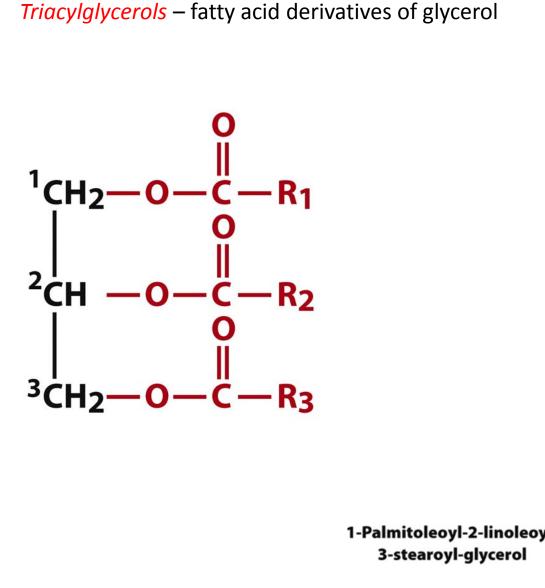


### Types of Fats


*Lipids* – biological origin – sparingly soluble in water


#### Main classes of lipids

Fatty Acids – long hydrocarbon chains with a carboxylic acid on one endHOTriacylglycerols – fatty acid derivatives of glycerolHOOH


*Phosphoacylglycerol*-phosphate substituted diacylglycerols

Cholesterol – 4 ring system with a single polar group





# Triacylglycerol (ide)



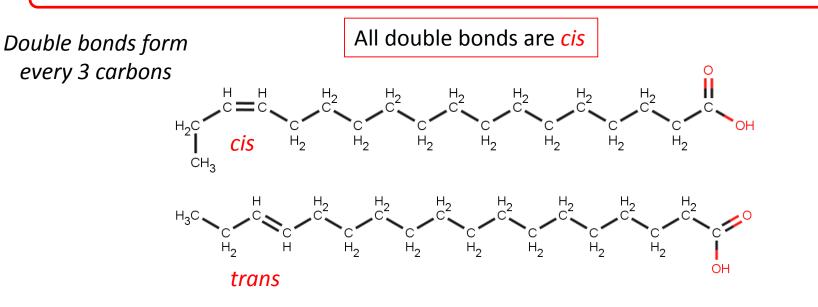
| 1CH2 -               | -²сн —               | <sup>3</sup> CH <sub>2</sub> |
|----------------------|----------------------|------------------------------|
| þ                    | ģ                    | ò                            |
|                      | 0 ¢1=0               | $c_{1=0}$                    |
| CH2                  | CH2                  | CH2                          |
| CH2                  | CH <sub>2</sub>      | CH2                          |
| CH2                  | CH <sub>2</sub>      | CH2                          |
| CH2                  | CH <sub>2</sub>      | CH2                          |
| CH <sub>2</sub>      | CH <sub>2</sub>      | CH <sub>2</sub>              |
| CH <sub>2</sub>      | CH <sub>2</sub>      | CH <sub>2</sub>              |
| CH <sub>2</sub>      | CH <sub>2</sub>      | CH <sub>2</sub>              |
| СН                   | СН                   | CH <sub>2</sub>              |
| CH                   | CH                   | CH <sub>2</sub>              |
| CH2                  | CH <sub>2</sub>      | CH <sub>2</sub>              |
| CH <sub>2</sub>      | СН                   | CH <sub>2</sub>              |
| CH2                  | 12<br>CH             | I<br>CH <sub>2</sub>         |
| CH <sub>2</sub>      | I<br>CH <sub>2</sub> | I<br>CH <sub>2</sub>         |
| I<br>CH <sub>2</sub> | I<br>CH <sub>2</sub> | I<br>CH <sub>2</sub>         |
| 1<br>16CH3           | I<br>CH <sub>2</sub> | I<br>CH <sub>2</sub>         |
| 2000 2000            | I<br>CH <sub>2</sub> | I<br>CH <sub>2</sub>         |
| yl-                  | 1                    | 1                            |
|                      | 18CH3                | 18013                        |

## Fatty Acids

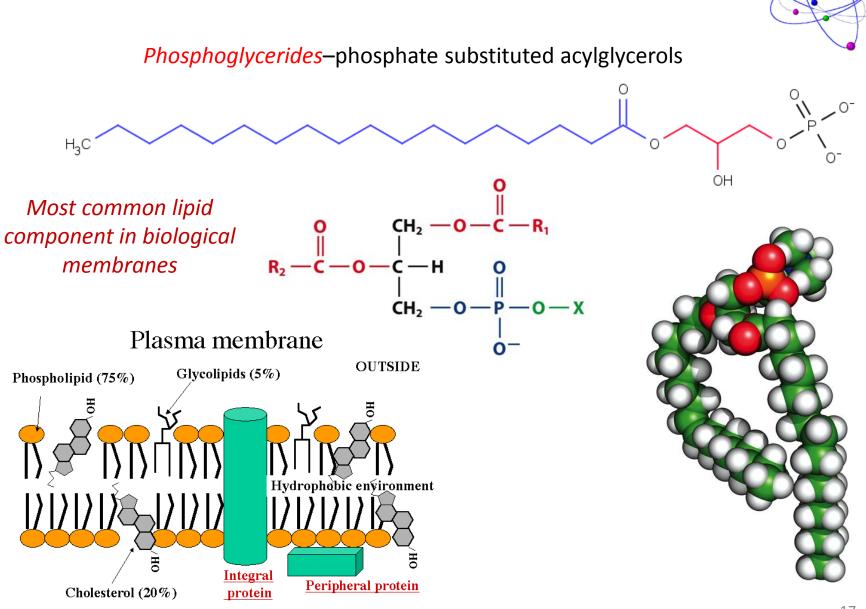
#### *Saturated* – single bonds all the way down the chain

| Saturate | ed fatty acids  |                    |                                                       |
|----------|-----------------|--------------------|-------------------------------------------------------|
| 12:0     | Lauric acid     | Dodecanoic acid    | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>10</sub> COOH |
| 14:0     | Myristic acid   | Tetradecanoic acid | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>12</sub> COOH |
| 16:0     | Palmitic acid   | Hexadecanoic acid  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>14</sub> COOH |
| 18:0     | Stearic acid    | Octadecanoic acid  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>16</sub> COOH |
| 20:0     | Arachidic acid  | Eicosanoic acid    | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>18</sub> COOH |
| 22:0     | Behenic acid    | Docosanoic acid    | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>20</sub> COOH |
| 24:0     | Lignoceric acid | Tetracosanoic acid | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>22</sub> COOH |

#### C > 20 or C < 14 are very uncommon


Most chains have an even number

# Fatty Acids


| Unsaturated – single bonds all the way down the chain |
|-------------------------------------------------------|
|-------------------------------------------------------|

| / | 16:1 <i>n</i> -7 | Palmitoleic acid | 9-Hexadecenoic acid                 | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub> CH=CH(CH <sub>2</sub> ) <sub>7</sub> COOH                                 |  |
|---|------------------|------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
|   | 18:1 <i>n</i> -9 | Oleic acid       | 9-Octadecenoic acid                 | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>7</sub> CH=CH(CH <sub>2</sub> ) <sub>7</sub> COOH                                 |  |
|   | 18:2n-6          | Linoleic acid    | 9,12-Octadecadienoic acid           | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> (CH=CHCH <sub>2</sub> ) <sub>2</sub> (CH <sub>2</sub> ) <sub>6</sub> COOH |  |
|   | 18:3n-3          | α-Linolenic acid | 9,12,15-Octadecatrienoic acid       | CH <sub>3</sub> CH <sub>2</sub> (CH=CHCH <sub>2</sub> ) <sub>3</sub> (CH <sub>2</sub> ) <sub>6</sub> COOH                 |  |
|   | 18:3n-6          | γ-Linolenic acid | 6,9,12-Octadecatrienoic acid        | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> (CH=CHCH <sub>2</sub> ) <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> COOH |  |
|   | 20:4n-4          | Arachidonic acid | 5,8,11,14-Eicosatetraenoic acid     | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> (CH=CHCH <sub>2</sub> ) <sub>4</sub> (CH <sub>2</sub> ) <sub>2</sub> COOH |  |
|   | 20:5n-3          | EPA              | 5,8,11,14,17-Eicosapentaenoic acid  | CH <sub>3</sub> CH <sub>2</sub> (CH=CHCH <sub>2</sub> ) <sub>5</sub> (CH <sub>2</sub> ) <sub>2</sub> COOH                 |  |
| ١ | 22:6n-3          | DHA              | 4,7,10,13,16,19-Docosahexenoic acid | CH <sub>3</sub> CH <sub>2</sub> (CH=CHCH) <sub>6</sub> CH <sub>2</sub> COOH                                               |  |
|   | 24:1 <i>n</i> -9 | Nervonic acid    | 15-Tetracosenoic acid               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>7</sub> CH=CH(CH <sub>2</sub> ) <sub>13</sub> COOH                                |  |
|   |                  |                  |                                     |                                                                                                                           |  |

#### Chain length : number of double bonds - position of 1<sup>st</sup> double bond from CH<sub>3</sub> terminal



# Phosphoglycerides



# The importance of omega-3 FA

•Blood fat (<u>triglycerides</u>). Fish oil supplements can lower elevated triglyceride levels. Having high levels of this blood fat puts you at risk for <u>heart disease</u>. DHA alone has also been shown to lower triglycerides.

•<u>Rheumatoid arthritis</u>. Fish oil supplements (EPA+DHA) can curb stiffness and joint pain. Omega-3 supplements also seem to boost the effectiveness of anti-inflammatory <u>drugs</u>.

•<u>Depression</u>. Some researchers have found that cultures that eat foods with high levels of omega-3s have lower levels of depression. Fish oil also seems to boost the effects of <u>antidepressants</u> and may help the depressive symptoms of <u>bipolar</u> disorder.

•Baby development. DHA appears to be important for visual and neurological development in infants.

•<u>Asthma</u>. A diet high in omega-3s lowers inflammation, a key component in asthma. But more studies are needed to show if fish oil supplements improve lung function or cut the amount of medication a person needs to control the condition.

•<u>ADHD</u>. Some studies show that fish oil can reduce the <u>symptoms of ADHD</u> in some children and improve their mental skills, like thinking, remembering, and learning. But more research is needed in this area, and omega-3 supplements should not be used as a primary treatment.

•<u>Alzheimer's</u> disease and <u>dementia</u>. Some research suggests that omega-3s may help protect against Alzheimer's disease and dementia, and have a positive effect on gradual <u>memory loss</u> linked to aging. But that's not certain yet.