Intermolecular Forces

Reaction Rates

Rates are a measure of how much change per time

$$[A] = The concentration of A$$

$$speed = \frac{Change in place (distance)}{time}$$
Measure of amount
per volume
$$reaction rate = \frac{Change in concentration}{time}$$

$$A + B \rightarrow C$$

 Δ = Change

$$rate = \frac{\Delta[C]}{\Delta time}$$

$$rate = \mathbf{k} \, [A]^a [B]^b$$

30

Enzymes are Catalysts

- Increase reaction rates
 - How long does cell division take?
 - How many chemical reactions take place in that time?

Reaction Progress

Biological Energy

Nutrition Facts

Serving Size 101 g

Amount Per Serving	
Calories 98	Calories from Fat 58
	% Daily Value*
Total Fat 6.5g	10%
Saturated Fat 4.1g	20%
Trans Fat 0.0g	
Cholesterol Omg	0%
Sodium 45mg	2%
Total Carbohydrates 8.3g 39	
Dietary Fiber 1.1g	4%
Sugars 1.9g	
Protein 1.4g	
Vitamin A 74%	Vitamin C 2%
Calcium 6%	Iron 5%

Nutrition facts	/100 g	/40 g
Energy	1793 kJ/428 kcal	717 kJ/171 kcal
Protein	24,7 g	9,9 g
Carbohydrate	40,5 g	16,2 g
Sugar	28,8 g	11,5 g
Fat	17,7 g	7,1 g
Saturated fatty acid	13,3 g	5,3 g
Trans fat	0,02 g	0,008 g
Fiber	3,7 g	1,5 g
Sodium	0,4 g	0,15 g
Vitamin C	27,6 mg	11 mg

1 cal = 4.184 J

ATP – the energy conduit

High Energy Bond -The energy required to hydrolyze a bond

Opposite of condensation

Role of ATP

"Energy Conduit" – ATP is a general intermediate in energy transfer from really high energy compounds to lower energy phosphate compounds

Biological systems are able to evolve such that multiple enzymes utilize this intermediate

Enzymes can easily adopt an ATP-binding fold and then evolve to bind another substrate

One very common ATP-binding motif is the Walker-A Motif

Phosphocreatine as an Energy Reservior

ATP + creatine ⇒ phosphocreatine + ADP

ATP can be generated from phosphocreatine within 5 seconds of a muscle burst!

Think of this as a seesaw – The more creatine or ATP that is available, the more phosphocreatine that will be made

The creatine/phosphocreatine system generates an ATP "Buffer" that can store ATP energy for times of need.

Bioenergy Production vs. Storage

Sudden surge in concentration of ATP?

Food and Bioenergy

Oxidation-Reduction Reactions

Why do we care?

Electron transfer reactions are at the core of metabolism! Counting electrons will let us

Aerobic Respiration

$C_6H_{12}O_6 + 6 O_2 \leftrightarrows 6 CO_2 + 6 H_2O$

Assigning oxidation states:

- Oxygen counts as -2
 - Except in $O_2 \rightarrow$ oxygen is 0 in O_2 .
- Hydrogens count as +1
 - Except in $H_2 \rightarrow$ hydrogen is 0 in H_2 .
- The oxidation state of carbon will balance the charge.

Examples

$$C_{2}H_{2}$$

$$C_{2}H_{4}$$

$$C_{2}H_{6}$$

$$CH_{3}CH_{2}CH_{2}CO_{2}H$$

$$CH_{3}CH_{2}CH_{2}CO_{2}^{-1}$$

Oxidation-Reduction Reactions

Why do we care?

Electron transfer reactions are at the core of metabolism! Counting electrons will let us

Aerobic Respiration

 $C_6H_{12}O_6 + 6 O_2 \leftrightarrows 6 CO_2 + 6 H_2O$

Determine how many electrons would be produced from each of the following examples:

Electron Flow and Metabolism

Oxidation-Reduction Reactions

Why do we care?

Electron transfer reactions!

Aerobic Respiration

$$C_6H_{12}O_6 + O_2 \leftrightarrows CO_2 + H_2O$$

Anaerobic Respiration – Fermentation (the cool one!)

 $C_6H_{12}O_6 \leftrightarrows CO_2 + CH_3CH_2OH$

Anaerobic Respiration Summary

