1. 1 gram of CH_{4} is added to a 1 L flask and pressurized to 4 atm. What temperature is the flask at?
2. A child is handed a $\mathbf{2} \mathbf{L}$ birthday balloon containing helium inside his house where the room temperature is $25^{\circ} \mathrm{C}$ - this, of course, makes little Bobby really happy! When Bobby walks outside to the frigid Minnesota winter day, the balloon loses $\mathbf{2 5 \%}$ of its volume - Bobby cries. Stupid gas laws made a kid cry on his birthday. What is the temperature outside? Assume that the pressure is the same inside and outside. Report your answer in ${ }^{\circ} \mathrm{C}$.
3. 100 grams of a noble gas is added to a 10 L flask at 300 K . The pressure of this flask is 2.94 atm . What is this gas? Hint: the only way to identify a gas is by determining the molar mass.
4. 4 liters of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ decomposes to nitrogen and oxygen gas. If this decomposition occurs at STP (so constant temperature and pressure!), determine the total volume of gas that is produced.
5. 5 grams of solid phosphorus trichloride is added to a 4 L reaction flask that contains chlorine gas at STP. Solid pohosphorus pentachloride is produced. During this reaction, the temperature increases to 300 K . Assuming that the volume does not change, what is the pressure in the flask after the reaction?
6. 1 gram of $\mathrm{C}_{5} \mathrm{H}_{12}$ is combusted in a 2.5 L reaction flask at 400 K .
a. How many moles of O_{2} is needed to react with $\mathrm{C}_{5} \mathrm{H}_{12}$?
b. Under the conditions listed above, what pressure of O_{2} is needed to react with all of the $\mathrm{C}_{5} \mathrm{H}_{12}$?
c. Assuming that all of the reactants are consumed:
i. What is the partial pressure of O_{2} in the flask after the reaction?
ii. What is the partial pressure of CO_{2} in the flask after the reaction?
iii. What is the partial pressure of $\mathrm{H}_{2} \mathrm{O}$ in the flask after the reaction?
iv. What is the total pressure in the flask?
7. 14 g of dry ice $\left(\mathrm{CO}_{2}(\mathrm{~s})\right)$ is put into a 4.2 L chamber that has some amount of N_{2} in it. This chamber is held at a constant temperature of 212 K as all of the CO_{2} sublimates $(\mathrm{s} \rightarrow \mathrm{g})$. After this process has finished, it is determined that CO_{2} accounts for 87% of the total pressure.
a. What is the pressure of CO_{2} ?
b. What is the pressure in the chamber after the sublimation finishes?
c. How many moles of N_{2} is present in the chamber?
d. What was the total pressure in the chamber prior to the sublimation?
8. 1.8 grams of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is combusted in a 2.6 L reaction chamber at pressurized to 3 atm. with oxygen at 400 K . Determine the total pressure in the flask after the reaction is complete.
(1) Neal temperature of a gas... so use the ideal gas law: $P V=n R T$

$$
\begin{array}{ll}
\begin{array}{l}
P=4 \mathrm{~atm} \\
V=1 \mathrm{~L}
\end{array} & n: ? \\
R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{k}}
\end{array} \quad \frac{1 \mathrm{gClt} 4 \left\lvert\, \frac{\mathrm{mol}}{}\right.}{}=0.0623 \mathrm{~mol}
$$

(2) Lots of junk words here. What's important: $V_{1}=2 \mathrm{~L} \quad T_{1}=25^{\circ} \mathrm{C}=298.15 \mathrm{~K}$

Loses 25% of Volume $\rightarrow 25 \%$ of $2=0.5 L$

$$
V_{2}=2 L-0.5 L=1.5 L
$$

$$
\begin{array}{ll}
P V=n R T \\
\text { constants } & \frac{V}{T}=\frac{n R}{P}=\text { constant }
\end{array} \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

$$
\begin{aligned}
& T_{2}=\frac{V_{2} T_{1}}{V_{1}}=\frac{1.5 L(298.15 \mathrm{~K})}{2 L}=223.6 \mathrm{~K} \\
& T_{2}=223.6 \mathrm{~K}-273.15=-49.5^{\circ} \mathrm{C}
\end{aligned}
$$

COL B
(3) Molar Mass $=\frac{g}{\mathrm{~mol}} \leftarrow$ this we know! (100g)

$$
\frac{100 \mathrm{~g}}{1.19 \mathrm{~mol}}=83.7 \mathrm{~g} / \mathrm{mol} \quad \text { Krypton! }
$$

(4) Constant $P+T$, so we can treat V like moles for stoichiometry steps!

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O}_{4}(g) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g)
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {TOt }}=8 L+4 L \\
& V_{\text {TOT }}=122
\end{aligned}
$$

(5)

$$
\begin{array}{cc}
\mathrm{PCl}_{3}(\mathrm{~s})+ \\
5 \mathrm{Sg} \\
\underset{y T}{ }+\underset{2}{ } \mathrm{Cl}_{2}(\mathrm{~g})
\end{array} \longrightarrow \mathrm{PCl}_{5}(\mathrm{~s})
$$

Need PRESume AFTER the rocetion. ONLY gas contributes to pressure, so:
(1) figure out how many moles of gas are produce or remain
(2) Convert to pressure

$$
\begin{aligned}
& \left.\int_{137.32 \mathrm{~g}}\right|_{1 \mathrm{~mol} \frac{1 \mathrm{~mol}}{\mathrm{PCl} \mathrm{~S}_{5}}}=0.0364 \mathrm{~mol} \mathrm{PCl} \mathrm{r} \text { made }
\end{aligned}
$$

$\mathrm{PCl}_{3}=L \cdot R$. So there will be som $\mathrm{Cl}_{2}(g)$ left
$0.0364 \mathrm{~mol} \mathrm{PCl} 5 \mathrm{made} \left\lvert\, \begin{array}{lll}1 \mathrm{mll} \mathrm{Cl}_{2} \\ 1 \mathrm{~mol} \mathrm{PC}_{5}\end{array}=0.0364 \mathrm{~mol} \mathrm{Cl} 2\right.$ consumed
$0.178 \mathrm{~mol} \mathrm{Cl}_{2}-0.0364 \mathrm{~mol} \mathrm{Cl}_{2}=0.1421 \mathrm{~mol} \mathrm{Cl} 2$ remaining

$$
\begin{aligned}
& P=? \\
& V=4 L \\
& T=300 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \left.P=\frac{n R T}{V}=\frac{0.1421 \mathrm{~mol}(0.08206}{4 L} \frac{\mathrm{L.atc}}{\mathrm{~mol} \mathrm{k}}\right)(300 \mathrm{k}) \\
& P=0.874 \mathrm{~atm}
\end{aligned}
$$

(b) $\mathrm{C}_{5} \mathrm{H}_{(1)}+8 \mathrm{O}_{2}(\mathrm{y}) \mathrm{COO}(g)+6 \mathrm{H}_{2} \mathrm{O}_{(g)}$

1 gram

b) $P=\frac{n R T}{V}=\frac{0.1108 \mathrm{~mol} \mathrm{O}_{2}}{2.5 \mathrm{~L}}\left(0.08206 \frac{\mathrm{LGAm}}{\mathrm{mdl} \cdot \mathrm{K}}\right)(400 \mathrm{~K})=1.455 \mathrm{~atm}$
C. i.) all O_{2} is consumed, so \varnothing atm
ii) to get $\mathrm{P}_{\mathrm{CO}}^{2}$, we need moles CO_{2} $0.01386 \mathrm{~mol} \mathrm{CrH}_{12} \left\lvert\, \begin{array}{lll}5 \mathrm{mal} \mathrm{CO}_{2} \\ 1 \mathrm{~mol} \mathrm{CH}_{2} & \begin{array}{c}0.0693 \\ \mathrm{~mol} \\ \mathrm{col}\end{array}\end{array}\right.$

$$
P=\frac{0.0693 \mathrm{~mol}}{2.5 \mathrm{C}}\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{mlt}}\right)(400 \mathrm{~K})=0.91 \mathrm{~atm} \mathrm{CO} 2
$$

iii)

$$
\begin{gathered}
0.01386 \mathrm{~mol} C_{5} H_{1} / \int_{1 \mathrm{~mol} \mathrm{H}}^{2} \text { O } \mathrm{m}_{5} \mathrm{~m}_{2}
\end{gathered}=0.08316 \mathrm{~mol} \mathrm{H} H_{2} \mathrm{O} .
$$

iv)

$$
P_{\text {rot }}=P_{\mathrm{CO}_{2}}+P_{\text {tho }}+P_{\mathrm{O}_{2}}=0.91 \mathrm{~atm}+1.09 \mathrm{~atm}+0 \mathrm{~atm}=2.00 \mathrm{~atm}
$$

(7)

a) $P=\frac{0.318 \mathrm{~mol}}{4.2 \mathrm{~L}}\left(0.08206 \frac{\mathrm{Lata}}{\mathrm{mlk}}\right)(212 \mathrm{k})=1.318 \mathrm{~atm}$
b) $P_{\mathrm{CO}_{2}}=87 \%$ of total $0.87 P_{\text {Tot }}=1.318 \mathrm{~atm}$

$$
P_{\text {Tot }}=1.514 \mathrm{~atm}
$$

c) $P_{\text {TOT }}$ car be converted to $n_{\text {TOT }}$ using ideal gas lav.

$$
\begin{aligned}
& n_{\text {TOT }}=\frac{(1.74 \mathrm{~atm})(4.2 \mathrm{C})}{(0.08206)(212 \mathrm{tt})}=0.366 \mathrm{~mol} \\
& n_{\text {TOT }}=n_{\mathrm{CO}_{2}}+n_{\mathrm{N}_{2}} \quad 0.366-0.318=0.0476 \mathrm{~mol} \mathrm{~N}
\end{aligned}
$$

d) $O N_{4} N_{L}$ is a gas, so $P=\frac{0.0476(0.08206)(212)}{4.2}=0.197 \mathrm{~atm}$
(8) $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}_{6}+\mathrm{LO}_{2}(g) \rightarrow \mathrm{V} \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

$$
\begin{aligned}
& \begin{array}{l|l|l}
1.8 \mathrm{~g} & \mathrm{~mol} & 6 \mathrm{~mol}_{\mathrm{CO}} \\
\hline & 180.18 \mathrm{~g} & 1 \mathrm{mal}_{6} \mathrm{CHOO}_{6}
\end{array}=0.0599 \mathrm{~mol} \mathrm{CO} 2 \\
& O_{2}: n=\frac{(3 \mathrm{~atm})(2.6 \mathrm{~L})}{(0.08206)(400 \mathrm{~K})}=0.2376 \mathrm{mal} \mathrm{O}_{2} \left\lvert\, \begin{array}{l}
6 \mathrm{md} \mathrm{CO2} \\
6 \mathrm{~mol} \partial_{2}
\end{array}=0.237 \mathrm{C} \mathrm{~mol} \mathrm{CO}\right.
\end{aligned}
$$

Need moles of all gases ($\mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2}$)
glucose is L.R. $\quad 0.0599 \mathrm{~mol} \mathrm{CO}$ produced

$$
\frac{0.0599 \mathrm{mcl} \mathrm{CO} \int_{6} 6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{6 \mathrm{~mol} \mathrm{CO}}
$$

$$
\begin{aligned}
& \mathrm{O}_{2}: 0.0599 \mathrm{~mol} \mathrm{H} \mathrm{O} \text { produad } \left\lvert\, \frac{6 \mathrm{md} \mathrm{O}_{2}}{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.0599 \mathrm{~mol} \mathrm{O}_{2}\right. \text { consumed } \\
& \begin{array}{c}
0.237 \text { (} \mathrm{mol} \\
\text { (stet) }
\end{array} \underset{\substack{0.0599 \mathrm{~mol} \\
\text { (used) }}}{0.0 .178 \mathrm{~mol} \mathrm{O}} \mathrm{O} \text { left } \\
& n_{\text {tot }}=0.178+0.0599+0.0599=0.2975 \mathrm{~mol} \mathrm{gas} \\
& P_{\text {TOT }}=\frac{0.2975(0.0820 c)(400)}{2.6}=3.76 \mathrm{~atm}
\end{aligned}
$$

