This exam is schedule for 75 minutes and I anticipate it to take the full time allotted. You are free to leave if you finish. In multiple part problems, points awarded will not be penalized for incorrect answer on previous parts, so simply move on if you get stuck on one part. If you need to, make up an answer for the previous part. Always neatly show work for partial credit.

1. Using the graphs below and this: $y=-0.163 x+2.525$
a. Determine the rate law

$$
\text { rate }=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.163 \mathrm{~s}^{-1}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)
$$

b. Determine the rate constant - make sure to include the correct units.

$$
0.163 \mathrm{~s}^{-1}
$$

c. Determine the initial concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$.

$$
\ln \left(\mathrm{H}_{2} \mathrm{O}_{2}\right)_{0}=2.525 \quad\left(\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{~J}_{0}=12.5 \mathrm{mM}\right.
$$

d. Determine the initial rate of the reaction.

$$
\text { rate }=0.1635^{-1}(12.5 \mathrm{mM})=2.036 \frac{\mathrm{mM}}{\mathrm{~s}}
$$

2. What are three ways to change the rate of a reaction? Clearly explain each of your answers.
(1) add a catalyst. this will deraeve the E and thrafine k
(2) change th concentration of reactant rate $=k[A D \longleftarrow$ if $C A]$ chasse, so dues 1 Rede
(3) Change Tape. this will change to rate constant (k)
3. Define the first and second laws of thermodynamics and explain what impact they have on the important concepts of thermodynamics that we have discussed in class.
$1^{\text {st }}$ law $=$ Energy must be conserved. From this idea, we were able to describe how the internal energy of a system can change heat is exchanged with the surroundings or work is done on or by the system. From the $1^{\text {st }}$ law, the state function of enthalpy was introduced.

2nd Law = the universe must tend toward disorder. This is where the term of entropy is introduced and how we learn about reaction spontaneity. Consequently, $\Delta \mathrm{G}$ comes from the $2^{\text {nd }}$ law.
4. Combustion engines are not 100% efficient; that is, not all of the energy produced from the combustion reaction results in work (you know, to make your car move). What happens to the rest of the energy?

It escapes as heat.
5. In your own words, describe why and which direction a reaction "shifts" when $\mathrm{Q}>\mathrm{K}$.

There are too many products, so the components of the reaction must adjust so that equilibrium ratio is established (reactants will form) and it becomes energetically favorable for the reverse reaction to happen ($\Delta \mathrm{G}>0$)
6. Why are equilibrium constants sensitive to temperature? In other words, why does K change with T ?

Because heat can be treated as a reactant or product. By changing the temperature of a reaction, this influences the "concentration" of heat. According to LeChattlier's Principle, the reaction must adjust to reestablish the proper ratio of reactants and products; this necessarily changes the ratio and therefore K.

What can make an equilibrium constant temperature independent? $\Delta \mathrm{H}=0$
7. $\mathrm{H}_{2} \mathrm{O}$ has a higher enthalpy of vaporization than $\mathrm{C}_{2} \mathrm{H}_{6}$. Why? Stronger intermolecular forces $(\mathrm{H}$ bond vs. LDF only)
8. Consider the two reaction coordinates below. Answer each of the following questions. If it is not possible to determine, say that.

a. Which reaction has a larger equilibrium constant? 2 the $1^{\text {st }}$ reaction is non-spontaneous and the $2^{\text {nd }}$ is spontaneous
b. Which reaction has a larger rate constant? 1 - the $1^{\text {st }}$ reaction has a smaller activation energy
c. Which reaction is spontaneous? 2 (products < reactants)
d. Which reaction has a rate constant for the forward reaction greater than the reverse reaction (i.e. $\mathrm{k}_{\text {for }}>\mathrm{k}_{\text {rev }}$) 2 - the activation energy for the reverse reaction (prod \rightarrow react) is smaller than for the forward
e. Which reaction is exothermic? No way to tell. We can only see that the reaction is spontaneous or non-spontaneous but not why.
f. Which reaction might have $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}<0$? the $1^{\text {st }}$ one. It is non-spontaneous and each of these are unfavorable.
9. Consider the following reaction. Circle the most correct choice for $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$. Clearly explain your choice for each.

10. Consider the following reaction:

$$
\mathrm{CS}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+2 \mathrm{~S}(\mathrm{~s})
$$

a. Using the information available at the back of the exam, calculate ΔG° and ΔH°.

$$
\begin{aligned}
& \Delta G^{\circ}=2(-137.2)-[67.1+-394.4]=52.9 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta H^{\circ}=2(-110.5)-[116.7+-393.5]=55.8 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

b. What is the equilibrium constant at $25^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \Delta G^{\circ}=-R T \ln K \\
& 52,900=-8.314(298 . n) \ln K
\end{aligned}
$$

$$
\begin{aligned}
\ln K & =-21.301 \\
K & =5.4 \times 10^{-10}
\end{aligned}
$$

c. Calculate ΔS°

$$
\begin{aligned}
& \Delta G^{\circ}=\Delta H^{\circ}-7 \Delta S^{\circ} \\
& 52,500=55800-298.15 \Delta s^{\circ} \quad \Delta S^{\circ}=9.73 \frac{\mathrm{~J}}{\text { mol.K }}
\end{aligned}
$$

d. If 1 M of all reactants and products are combined at $25^{\circ} \mathrm{C}$, will this reaction shift to products or reactants? Please explain your answer.

$$
\text { Reactants } \Delta G^{\circ}>0
$$

Thess ar standerd conditions!.
y reactants
e. 2 atm of CS_{2} and 2 atm of CO_{2} are combined at 1000 K . When equilibrium is reached, the pressure of CO is 0.1214 atm . Determine the equilibrium constant at this temperature.
f. Calculate $\Delta \mathrm{G}$ if 0.04 atm of $\mathrm{CO}, 2 \mathrm{~atm}$ of CO_{2}, and 1 atm of CS_{2} are added to a reaction flask at 1000 K . If you didn't calculate an equilibrium constant in part e, use 1.25×10^{-3}.

$$
\begin{aligned}
& \Delta G^{0}=-8.314(298.15) \ln 3.92 \times 10^{-3}=13,736.8 \frac{\mathrm{~J}}{\mathrm{~m}=1} \\
& \Delta G=13736.8+8.314(1000) \ln \frac{(0.04)^{2}}{(2)(1)}=-59,286 \frac{\mathrm{~J}}{\mathrm{mul}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{CS}_{2}+\mathrm{CO}_{2} \rightleftharpoons 2 \mathrm{CO}+2 \mathrm{~S}(3) \\
& K=\frac{(0.1214)^{2}}{(2-0.0607)^{2}} \\
& K=3.92 \times 10^{-3} \\
& P_{c o}=2 x=0.1214 \\
& x=0.0607
\end{aligned}
$$

11. Complete one of the problems on this page. You can answer more for extra credit. Please use the next page to show your work if you need more space.
a. Determine the total pressure at equilibrium if 4 grams of carbon and 1 atm of H_{2} are added to a reaction flask at $500^{\circ} \mathrm{C}$.

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H} 2(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g}) \quad \mathrm{Kp}=2690 \mathrm{~atm}^{-1} \text { at } 500^{\circ} \mathrm{C}
$$

b. Using the information in the table below, determine the heat capacity of solid CS_{2} if 2.34 kJ of heat is released when 10 grams of liquid CS_{2} is cooled from $46.3^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$.
c. Determine the standard molar entropy of fusion and vaporization for CS_{2}.

Thermodynamic values for $\mathrm{CS}_{\mathbf{2}}$

$\mathrm{T}_{\mathrm{b}}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{H}_{\text {fusion }}(\mathrm{kJ} / \mathrm{mol})$	$\Delta \mathrm{H}_{\text {vaporization }}$ $(\mathrm{kJ} / \mathrm{mol})$	$\mathrm{C}(\mathrm{solid})$ $\mathrm{J} /(\mathrm{mol} \mathrm{K})$	C (liquid) $\mathrm{J} /(\mathrm{mol} \mathrm{K})$	$\mathrm{C}(\mathrm{gas})$ $\mathrm{J} /(\mathrm{mol} \mathrm{K})$
46.3	-110.8	4.39	27.65		78.99	46.55

d. Use the method of initial rates to determine the rate law and rate constant.

Experiment	$\left[\mathbf{N O}_{\mathbf{2}}\right](\mathbf{M})$	$[\mathbf{C O}](\mathbf{M})$	Rate $\left(\mathbf{M ~ s}^{-\mathbf{1}}\right)$
$\mathbf{1}$	0.15	0.15	0.001974
$\mathbf{2}$	0.30	0.15	0.007898
$\mathbf{3}$	0.60	0.30	0.25272
$\mathbf{4}$	0.60	0.60	2.02176

e. Using the information at the back of the exam, determine the temperature that is needed to make this reaction spontaneous.

$$
\mathrm{CS}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+2 \mathrm{~S}(\mathrm{~s})
$$

a)

$C(s) \rightarrow$	$2 \mathrm{H}_{2}(\mathrm{~g})$	$\rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})$
\pm	1 atm	0
C	$-2 x$	$+x$
E	$1-2 x$	x

$$
2690=\frac{x}{(1-2 x)(1-2 x)}=\frac{x}{1-4 x+4 x^{2}}
$$

$$
\begin{aligned}
& P_{\mathrm{H}_{2}}=1-2(0.495)=0.01 \mathrm{~atm} \\
& P_{\text {CHI }}=0.495 \\
& P_{\text {tot }}=0.495+0.01=0.505 \mathrm{~atm}
\end{aligned}
$$

b. $\Delta H_{\text {tot }}=\frac{-2340 \mathrm{~J}}{0.1313}=\frac{-17819.1 \mathrm{~J}}{\mathrm{~mol}}$

$$
\log \mathrm{CS}_{2} \left\lvert\, \begin{gathered}
\text { mol } \\
\hline 6.158
\end{gathered}=0.1313 \mathrm{~mol}\right.
$$

$$
-17819.1 \frac{\mathrm{~J}}{\mathrm{~mol}}=-12409.3+-4390+\Delta \mathrm{H}_{3} \Delta H_{1}=\frac{78.99 \mathrm{~J}}{\mathrm{molk}}(-110.8-46.3)=-12409.3 \mathrm{~J}
$$

$$
\Delta H_{3}=-1019.8 \frac{\mathrm{~J}}{\mathrm{~m}}=\mathrm{Cl}=C(-150--110.8) \quad \Delta H_{2}=-\frac{4390 \mathrm{~J}}{\mathrm{~m}}
$$

$$
c=26.02 \mathrm{~J}
$$

mol .K
C. (c) $T_{m} \Delta G=0$ for $S \rightleftharpoons l \quad \Delta H_{f i s}^{\circ}-T_{m} \Delta S_{f s}^{\circ}=0$

$$
\Delta S_{f u s}^{0}=\frac{\Delta H_{f u s}^{0}}{T_{m}}=\frac{4390 \frac{\mathrm{~J}}{\mathrm{~mol}}}{-110.8+273.01}=27.04 \mathrm{~J}
$$

$$
\Delta S_{v a r}^{S}=\frac{\Delta H_{v e p}^{0}}{T_{b}}=\frac{2760 \mathrm{~J} / \mathrm{ml}}{46.3+273.15}=\frac{86.56 \mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

d.

$$
\begin{aligned}
& \frac{0.001974}{0.007898}=\frac{k}{K}\left(\frac{0.15}{0.3}\right)^{K}\left(\frac{0.17}{0.15}\right)^{T} \\
& 0.25=(0.5)^{x} \\
& \frac{\log 0.75}{\log 0.5}=x=2 \\
& \frac{0.25272}{2.02176}=\frac{K}{K}\left(\frac{0.6}{0.6}\right)^{K}\left(\frac{0.3}{0.6}\right)^{Y} \\
& 0.125=0.5^{4} \\
& \frac{\log 0.125}{\log 0-5}=4=3 \\
& 2.02176 \frac{M}{S}=k(0.6 M)^{2}(0.6 M)^{3} \\
& K=26 M^{-4} s^{-1} \quad \text { rate }=26 M^{-4} s^{-1}\left(\mathrm{NO}_{2}\right)^{2}(\mathrm{CO})^{3}
\end{aligned}
$$

e. you alread, detemines $\Delta H^{\circ}+K$ for this reactire © $25^{\circ} \mathrm{C}$ (problem 10)

$$
\begin{aligned}
& \Delta H^{\circ}=55.8 \mathrm{~kJ} / \mathrm{mol} \\
& K=5.4 \times 10^{-10} e 298.15 \mathrm{~K} \quad \ln \frac{\mathrm{~K}_{2}}{K_{1}}=\frac{\Delta H}{R_{2}}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
\end{aligned}
$$

Tu be spentare..s, $\Delta C_{1}=0+K=1$

$$
K_{2}=1 \quad T_{2}=?
$$

$$
\begin{aligned}
\ln \frac{1}{5.4 \times 10^{10}} & =\frac{55800}{8.3141}\left(\frac{1}{298.15}-\frac{1}{\sqrt{2}}\right) \\
21.34 & =6711.57\left(0.00335-\frac{1}{T_{2}}\right) \\
0.0031796 & =0.00335 \cdot \frac{1}{T_{2}} \\
\frac{1}{T_{2}} & =0.0001704 \\
T_{2} & =5868 \mathrm{~K}
\end{aligned}
$$

\＆＇	¢＇	E＇	＇＇	ع＇	¢＇	＇＇	E＇	¢＇	t＇t	－1	s＇l	\＆＇	L＇	
（69z）	（892）	（Ļz）	（z̧z）	（1．¢Z）	（ \llcorner ¢ ）	（ $\llcorner\llcorner$ て）	（とち乙）	（ャャて）	（ \llcorner ¢ ）	ع0：882	to＇ız	ャo＇z\＆z	（LZz）	
ON	PW	m」	sヨ	10	уя	wo	UV	n_{d}	dN	ก	${ }^{\text {ed }}$	41	O＊	sәрıu！${ }^{\text {er＊＊}}$
201	101	004	66	86	46	96	96	p6	$\varepsilon 6$	26	16	06	68	
												（1）		
1＇t	E＇	2＇	2＇	て＇1	＇t	＇＇	＇t	Z＇1	1＇t	L＇	1	L＇	1＇t	
0 ¢ \＆ 1	86891	$97<191$	\＆6． 91	09：291	86891	GでLG1	L6＇ LG	98．0s	（stl）	ャでかっし	16.071	て10ヶl		
91	ml_{1}	19	OH	Ka	q1	pg	ng	us	mb_{d}	N	${ }^{1 d}$	${ }^{\circ}$	¢7	｜$_{*}$
d	5	89		99	91	t9	¢9	－	19		G	89		｜＊

	商	$\underbrace{\infty}_{\infty}$				$\stackrel{+}{0}$	
			酉		家	N	
：	＊						
			$\begin{array}{cc} A \\ \stackrel{A}{\omega} \\ \stackrel{y}{\infty} \\ \hline \end{array}$	ω			
				－			
				ar		$\stackrel{\stackrel{\omega}{\omega}}{\circ}$	
				\cdots			
気罗罗耍亭				$\checkmark \quad \stackrel{\rightharpoonup}{\infty}$	\sum_{π}^{∞}		
$\begin{array}{r} \widehat{\sim} \\ \text { O्O } \\ \hline \end{array}$		$\underset{\sim}{\sim} \underset{\sim}{\stackrel{\rightharpoonup}{0}} \boldsymbol{\sim}$					
	㩊テン高	$\underset{\sim}{\stackrel{\rightharpoonup}{N}}$	${ }_{\infty}^{\infty}$		$\begin{aligned} & N \\ & \hline O^{\vee} \end{aligned}$		
$\stackrel{\text { N}}{\underset{\sim}{N}}$	商		$\underset{\infty}{M_{\infty}^{\infty}} \underset{\infty}{\infty}$	$\stackrel{\rightharpoonup}{\circ}$			
					NiN		
N	No		$\underset{\sigma}{\stackrel{O}{\omega}} \underset{\sim}{\omega} \mathrm{~N} \omega$	$\stackrel{\rightharpoonup}{*}$	©		
	$\stackrel{N}{\stackrel{N}{A}} \underset{\infty}{\stackrel{\sim}{\omega}}$		$\stackrel{\circ}{\circ} \stackrel{\circ}{\infty}$	\overbrace{i}^{N}		$\stackrel{\rightharpoonup}{\omega}$	
－	准元品署				旁	$\stackrel{\rightharpoonup}{*}$	
			\|	($\stackrel{\rightharpoonup}{\text { a }}$	
	N				$r_{n} \stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{\text { a }}$	
	\sim_{N}^{N}		$\underbrace{9}_{\infty}$		$\underbrace{\stackrel{\rightharpoonup}{0}}_{0}$	$\stackrel{\rightharpoonup}{2}$	
				俞卫		！	

	$\Delta \boldsymbol{H}_{\boldsymbol{f}}^{\mathbf{0}}$ $\mathrm{kJ} \mathrm{mol}^{-1}$	$\Delta \boldsymbol{G}_{\boldsymbol{f}}^{\mathbf{0}}$ $\mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{CS}_{2}(\mathrm{~g})$	116.7	67.1
$\mathrm{CO}(\mathrm{g})$	-110.5	-137.2
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	-394.4

Equations

$\Delta G=\Delta H-T \Delta S$
$\Delta U=q+w$
$\Delta H=C_{p} \Delta T$
$K p=K c(R T)^{\text {Angas }}$
$\frac{1}{[A]}=k t+\frac{1}{[A]_{0}}$
$\Delta G^{0}=-R T \ln K$
$\Delta G=\Delta G^{o}+R T \ln Q$
$w=-p \Delta V$
$\Delta G=-T \Delta S_{\text {universe }}$
$\ln \frac{K_{2}}{K_{1}}=\frac{\Delta H}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \quad \mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad k=A e^{-E_{a} / R T}
$$

$$
[A]=-k t+[A]_{0}
$$

$$
\ln [A]=-k t+\ln [A]_{0}
$$

