Solutions

1. In lab, you found a jar of ammonium chloride solid. Describe how to make 1.8 L of 3.25 M NH₄Cl solution.

Strategy: 1. Determine how many moles of NH₄Cl you need. 2. Convert to mass.

2. If 2.65 grams of magnesium nitrite is added to 1.8 L of water, what is the concentration of Mg(NO₂)₂?

What is the concentration of Mg2+?

Strategy: use formula subscripts to convert.

What is the concentration of NO₂-1?

What is the concentration of NO₂-1 if another 1.8 L of water is added?

Strategy: Since moles of nitrite remain constant, the change in [NO₂⁻¹] is due to the change in volume. 1.

Determine the new volume. 2. Calculate molarity (moles per liter).

- 4. In lab, you find a bottle labelled 1.8 M Mg(OH)₂. You determine that the volume of this solution is exactly 375 mL. Starting with this solution, how much water do you need to add to have exactly 1.00 M OH:?
- Strategy: 1. Determine how many moles of OH⁻¹ you have. 2. From moles of OH⁻¹ and desired concentration, determine the volume that is needed. 3. Calculate the volume of water that you need to add

(3)
$$V = 135L - 0375L = 0.975L$$

5. Describe how to make a solution that contains 2.5 M chloride from 1.50 L of 2.5 M FeCl₃.

6. 900 mL of 0.250 M FeCl₂ is mixed with 350 mL of 302 mM NaOH. Determine the mass of any solid that forms and determine the concentration of all ions left in solution after the reaction.

Step 1: Write a balanced double displacement reaction.

Fellz (agy + 2 NaOH(ag) -> 2 Nacl (agy + FelOH)2 (5)

Step 2: Identify spectator ions. Net VCI

Fext + OH become 50/12 > Not spectatos.

Step 3. Using a limiting reactant approach, determine the mass of the solid that can be produced. You will

need to use the volume and concentration of each solution to find moles of reactants that are available.

0.94 | 0.25 mil Fec(2 | mul Fe(0H)2 | 89.87g = 20.22g Fe(0H)2

0.35 L | 0.302 mil Nach (mil Fe(04)2) 89.87 5 - 4.75 g Fe(04)2

Step 4. You should have found that NaOH is the limiting reactant. This means that ALL of the OH- was used to make Fe(OH)2. What is the concentration of OH after the reaction?

Step 5. Determine the concentration of the spectator ions (Na+ and Cl). The steps for this are the same as you saw in problem 2.

CT = 0.9 L | 0.25 mol Fecta | 2 mol CT = 0.45 mol CT = 0.36 M Natio 0 35L/ 0.302 mol McoA/ = 0.1057 mol Nat = 0.085M

Step 6. Determine the concentration of Fe²⁺. Some iron was incorporate into the solid, so we need to figure out how much you started with and how much was used.

Started with: use volume, molarity, and formula subscript.

Used: Start with the mass of Fe(OH)₂ that was produced and determine the moles of Fe²⁺ that was used.

4.75 g Fe (04)2 | mul Fe(04)2 | mul Fe2t = 0.052 mul u sed 89.875 Fe(01)2 | mul Fe(01)2 = 0.052 mul u sed The moles of Fe left is the difference of the two values above. Take this divide by the total volume to get M.

0,225 -0.05] = 0.172 mol Fe2+ = 0.138 M

7. 600 mL of 0.850 M MgCl₂ is mixed with 750 mL of 802 mM Pb(NO₃)₂. Determine the mass of any solid that forms and determine the concentration of all ions left in solution after the reaction. MgUz(az) + Pb(NOj)z(az) -> Pbchyosty(s) + MgClz(az) Spectators: Mg2 + NO, -1 Solid Mgaz: 6.64/0.45ml 1 mil Pbc/2 1278.18 = 141.8 g Pbc/2 PL(NO)) 2: 0.75L | 0.802 mol | 1 mol PSC12 | 271/19 = 156.1 g PSC12 I in this Restart -> Ca-) = & M zb x ct ctoi7 Mgt: 0.6 L 0.85 ml 1 ml Mgcl = 0.51 mol 2 = 0.38 M Mgt NOJ: 0.75L 0.802 Mal 2 md NOJ = 1.202 mal = 0.891 M NOZ Stort = 00675 0.183 mul 2 ml PBT= 6.900 molnul CIPS 2+ 1864: 141.85 PSan mol 12mol PB2+ - DOT mol PS2+
278.15 [mol PSC12 left: 0.602 - 0.51 - 0.092 mol Plat - 0.068 M Plat