
Statistics
Chapter 4



Section 4-4
Comparison of Means with 
Student's t



t Test: Comparison of Means

Are the means of two sets of measurements “statistically different”?

If you make two sets of measurements of the same quantity, 
generally

1 2x x≠
due to random variations in measurements.

The t test determines if there is a statistical difference between1x and 2x .
If tcalculated > ttable, then reject the null hypothesis.
• There is <5% chance that the two data sets came from populations with the 

same population mean. 
• The difference is considered significant.



Comparisons of Means with Student’s t

Case 1
Comparex to a 
known value:
• Measure quantity 

several times.
• Obtainx and s.
Doesx compare to 
accepted answer, µ?

Case 2
Compare 1 2tox x with replicate 
samples:
• Measure quantity multiple 

times by two different 
methods.

• Obtain 1 1x s± and 2 2x s±
(for each method).

Does 1x agree with 2x within 
experimental uncertainty?

Case 3 (paired test)
Compare two methods where 
samples are not duplicated: 
• Measure sample A once by 

method 1 and once by 
method 2.

• Measure sample B once by 
method 1 and once by 
method 2.

Do the two methods agree 
within experimental 
uncertainty?



Case 1: Comparing Measured Result with “Known” Value

A coal sample is certified to contain 3.19 wt% sulfur. A new analytical 
method measures values of 3.29, 3.22, 3.30, and 3.23 wt% sulfur, 
giving a mean of 03.26x = and a standard deviation s = 0.041.

Does the answer using the new method agree with the known 
answer?  

 0
(3.182)(0.004 1)

43.26= ± =Confidence Interval 3.260 0.006 5= ± ±
tsx

n
• Confidence interval = 3.195 to 3.325 wt%
• Known value, 3.19 wt%, outside 95% confidence interval
• Method gives “different” result from known result

(Result is so close scientist might want to complete a few more trials to confirm)



Case 2a: Comparing Replicate Measurements When 
Standard Deviations Are Not Significantly Different

Recall
:

3HCO− in horse blood is measured after each 
race. Original 

instrument
Substitute 
instrument

Mean (𝑥̅𝑥, mM) 36.14 36.20

Standard deviation (s, mM) 0.28 0.47

Number of measurements 
(n)

10 4

2 2
1

calculated 22 2
2

(0.47) 2.8
(0.28)

sF
s

= = =

Fcalculated = 2.82 < Ftable = 5.08, so s1 and s2
are not significantly different.

Do the means of the two methods 
differ?
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Case 2a: Comparing Replicate Measurements When
Standard Deviations Are Not Significantly Different
Do the means of the two methods differ?
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Original 
instrument

Substitute 
instrument

(𝑥̅𝑥, mM) 36.14 36.20

(s, mM) 0.28 0.47

(n) 10 4

95% critical value of t in Table 4-4 for 
(n1 + n2 − 2) = 12 degrees of freedom 

lies between 2.228 and 2.131

If tcalculated > ttable, then reject the null hypothesis.       tcalculated(0.300) < ttable(2.131)

• There is <5% chance that the two data sets came from populations with the same 
population mean.

• The difference in means is not considered significant.



Lord Rayleigh and the Discovery of Argon

Dry air is composed of ~1/5 oxygen and ~4/5 nitrogen

Measured nitrogen with two experiments: 
(at constant temperature, pressure, and volume)

• Mass of N2 after removing O2 from air
• Mass of N2 generated from chemical decomposition

Do the means of the two methods differ?

Figure 4-7

Table 4-5

From air (g)

From Chemical 
decomposition 
(g)

2.310 17 2.301 43

2.309 86 2.298 90

2.310 10 2.298 16

2.310 01 2.301 82

2.310 24 2.298 69

2.310 10 2.299 40

2.310 28 2.298 49

— 2.298 89

Average
2.310 109 2.299 472

Standard 
deviation

0.000 143 0.001 379



Case 2b: Comparing Replicate Measurements When
Standard Deviations Are Significantly Different

Do the means of the two methods differ?
If the standard deviations of the two methods differ (F-test), the t test 
equations become:

( ) ( ) ( ) ( )/ /
1 2 1 2

calculated 2 2 2 2
1 1 2 2 1 2

− −
= =

+ +

x x x x
t

s n s n u u
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Round degrees of freedom to the nearest integer.
Compare tcalculated to ttable at 95% confidence using appropriate degrees of 

freedom.



Example: Is Rayleigh’s N2 from Air 
Denser Than N2 from Chemicals? (1 of 4)
The average mass of nitrogen from air is

1 92.310 10 g,x = with a standard deviation of
s1 = 0.000 143 (for n1 = 7 measurements).
The average mass from chemical decomposition is

2 22.299 47 g,x = with a standard deviation of 
s2 = 0.001 379 (for n2 = 8 measurements). 
Are the two masses significantly different?

Table 4-5

From air (g)

From Chemical 
decomposition 
(g)

2.310 17 2.301 43

2.309 86 2.298 90

2.310 10 2.298 16

2.310 01 2.301 82

2.310 24 2.298 69

2.310 10 2.299 40

2.310 28 2.298 49

— 2.298 89

Average
2.310 109 2.299 472

Standard 
deviation

0.000 143 0.001 379



Example: Is Rayleigh’s N2 from Air Denser 
Than N2 from Chemicals? (2 of 4)

Solution: The F-test told us that the standard deviations are significantly different, so 
we use Equations 4-9b and 4-10b:

( ) ( )
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Example: Is Rayleigh’s N2 from Air 
Denser Than N2 from Chemicals? (3 of 4)
Solution: Equation 4-10b gives us 7.17 degrees of freedom, which we round to 7. For 
7 degrees of freedom, the critical value of t in Table 4-4 for 95% confidence is 2.365. 
The observed value tcalculated = 21.7 far exceeds ttable. The obvious difference between 
the two data sets in Figure 4-7 is highly significant.

Figure 4-7



Example: Is Rayleigh’s N2 from Air 
Denser Than N2 from Chemicals? (4 of 4)
Test Yourself: If the difference between the two mean values were 
half as great as Rayleigh found, but the standard deviations were 
unchanged, would the difference still be significant?



Case 3: Paired t Test for Comparing Individual Differences

Do the methods give the same answer?
• Use two methods to make single 

measurements on several different 
samples..

• No measurement is duplicated.( )∑ 2
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One-Tailed and Two-Tailed 
Significance Tests
Two tailed tests: t test calculations assume:
• Certified value lies in the outer 5% of the area under the curve

One tailed tests: compare mean with regulatory limit
• 5% region lies only on one side of the certified mean

Consider drinking water: We are concerned only if the 
probability of arsenic (As) in water exceeds the limit.
EPA maximum permissible level = 10 µg As/L
Water samples  10.06, 10.12, 10.19, and 10.04 µg As/L; 25 7510.10 0.06 μg/Lx = ±
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Figure 4-9



Section 4-5
t Tests with a Spreadsheet



t Tests with a Spreadsheet

Spreadsheet for 
comparing mean 
values of Rayleigh’s 
nitrogen 
measurements

Figure 4-
10



Section 4-6
Grubbs Test for an Outlier



Grubbs Test: Check for Outliers

Should a data point that looks like an anomaly be discarded?
If you make several replicate measurements, results should fall within a 
Gaussian distribution about the mean. But when n is small, it can be 
difficult to determine if an outlying data point falls within the normal 
distribution. 
The Grubbs test is a statistical test to decide whether to discard a datum 
that appears discrepant (an “outlier”).

If Gcalculated > Gtable, then reject the null hypothesis.
• There is <5% chance that the suspicious data point is a member 

of the same population as the other measurements.
• The difference is considered significant.



Grubbs Test for an Outlier (1 of 3)

When a single data point lies far from the 
other data in a set of measurements:

• First, check your notebook.

• Are there any recorded observations about 
the anomalous data point (for example, a 
note that solution was lost during transfer)?

• Any data point based on recorded faulty 
procedure should be discarded, no matter 
how well it fits the rest of the data 
(“blunder”).



Grubbs Test for an Outlier (2 of 3)

In the absence of a recorded blunder, use the Grubbs test.

| |
calculated

questionable value −
=

xG
s

• If Gcalculated is greater than G in Table 4-6, the 
questionable point should be discarded.

• Only one outlier may be rejected using the Grubbs test.



Grubbs Test for an Outlier (3 of 3)

In the absence of a recorded blunder, use the Grubbs test.

| |
calculated

questionable value −
=

xG
s

Volumes for replicate titrations (mL): 28.54, 28.39, 28.47, 27.68

(Larger than expected
precision for this titration

;
)

←28. 27 0. 40 mL RSD 1. 4%= ± =x

calculated table 
|27.68 28.27| 1.482 1.463 for 4 observations

0.40
G G−

= = =

Gcalculated > Gtable, so reject the null hypothesis.
• The questionable data point is an “outlier” and should be discarded.



Table 4-6 Critical values of G for rejection of 
outlier

Number of 
observations

G
(95% confidence)

Number of 
observations

G
(95% confidence)

3 1.153 10 2.176
4 1.463 11 2.234
5 1.672 12 2.285
6 1.822 15 2.409
7 1.938 20 2.557
8 2.032 30 2.745
9 2.110 50 2.956

𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 /𝑠𝑠. If 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, the value in question can be rejected with 
95% confidence. Values in this table are for a one-tailed test, as recommended by ASTM.



Section 4-7
The Method of Least Squares



The Method of Least Squares
For most chemical analyses, the response obtained by the given 
lab procedure must be compared to known quantities (called 
standards).
In this way the response from an unknown quantity can be 
interpreted.

• Prepare a calibration curve from known standards.
• Work in a region where the calibration curve is linear (usually).

Method of least squares: used to draw the “best” straight line 
through experimental data points that contain some scatter

• Some points will lie above and some below the line.
• Equation y = mx + b can be used to quantify the unknown from 

it  i l



Finding the Equation of the Line

Assume:
• Uncertainty in y values is much greater than 

uncertainty in x values (sy >> sx).
• Uncertainties of all y values are similar.

Draw a line to minimize vertical deviations 
between points and line. 

Figure 4-11

• Vertical deviation di = yi − y = yi − (mxi + b)
Deviations can be positive or negative. To minimize magnitude, 
irrespective of sign, square the deviation2 2( )i i id y mx b= − + ← method of least squares



Determinants

Mathematically finding values of m and b that 
minimize the sum of the squares involves 
some calculus.
We express the final solution for m and b as 
determinants.

e f
eh fg

g h
= −

6 5
(6 3) (5 4) 2

4 3
= × − × =



Determinants to Solve Method of Least Squares
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Table 4-7 Calculations for least-squares analysis

𝒙𝒙𝒊𝒊 𝒚𝒚𝒊𝒊 𝒙𝒙𝒊𝒊𝒚𝒚𝒊𝒊 𝒙𝒙𝒊𝒊𝟐𝟐 𝒅𝒅𝒊𝒊(= 𝒚𝒚𝒊𝒊 −𝒎𝒎𝒙𝒙𝒊𝒊 − 𝒃𝒃) 𝒅𝒅𝒊𝒊𝟐𝟐

1 2 2 1 0.038 46 0.001 479 3
3 3 9 9 −0.192 31 0.036 982
4 4 16 16 0.192 31 0.036 982
6 5 30 36 −0.038 46 0.001 479 3

∑𝑥𝑥𝑖𝑖 = 14 ∑𝑦𝑦𝑖𝑖 = 14 ∑(𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖) = 57 ∑(𝑥𝑥𝑖𝑖2) = 62 ∑(𝑑𝑑𝑖𝑖2) = 0.076 923 

57 14 62 14 (57 4) (14 14) 32 0.615 38
14 4 14 4 (62 4) (14 14) 52

62 57 62 14 (62 4) (57 14) 70 1.346 15
14 14 14 4 (62 4) (14 14) 52

m

b

× − ×
= ÷ = = =

× − ×

× − ×
=
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÷ = =



=
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−
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
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y = 0. 615 38 x + 1. 346 15



Example: Finding Slope and Intercept with a 
Spreadsheet (1 of 3)
Excel has functions called SLOPE and INTERCEPT, whose use is 
illustrated here:



Example: Finding Slope and Intercept with a 
Spreadsheet (2 of 3)
The slope in cell D3 is computed with the formula 
“=SLOPE(B2:B5,A2:A5)”, where B2:B5 is the range containing the y 
values and A2:A5 is the range containing x values.



Example: Finding Slope and Intercept with a 
Spreadsheet (3 of 3)

Test Yourself: Change cell A3 from 3 to 3.5 and find the new slope 
and intercept.



How Reliable Are Least Squares Parameters?

To estimate uncertainties in m and b, an uncertainty analysis must be 
performed.

Estimate σy, the population standard deviation for all y, by calculating sy.



Example: Finding sy, um, and ub with a Spreadsheet 
(1 of 3)

Excel function LINEST returns the slope and intercept and their standard uncertainties 
in a table (a matrix). As an example, enter x and y values from Table 4-7 in columns A and B. 
Then highlight the 3-row × 2-column region E3:F5 with your mouse. This block of cells is 
selected for the output of LINEST. On the Formulas ribbon, go to Insert Function. In the 
window that appears, in “Or select a category” select Statistical and double click LINEST. 
The new window asks for four inputs to the function. For y values, enter B2:B5. Then enter 
A2:A5 for x values. The next two entries are both “TRUE”. The first TRUE tells Excel that we 
want to compute the y-intercept of the line and not force the intercept to be 0. The second 
TRUE tells Excel to print out the uncertainties as well as the slope and intercept. The formula 
you have just entered is “=LINEST(B2:B5,A2:A5,TRUE,TRUE)”. Now press 
CONTROL+SHIFT+ENTER on a PC or CONTROL+SHIFT+RETURN on a Mac. 



Example: Finding sy, um, and ub with a Spreadsheet 
(2 of 3)
Excel prints out a matrix in cells E3:F5. Write labels around the block to indicate what is 
in each cell. The slope and intercept are on the top line. The second line contains um 
and ub. Cell F5 contains sy, and cell E5 contains a quantity called R2, which is defined in 
Equation 5-3 and is a measure of the goodness of fit of the data to the line. The closer R2 
is to unity, the better the fit.



Example: Finding sy, um, and ub with a Spreadsheet 
(3 of 3)

Test Yourself: Change cell A3 from 3 to 3.5 and apply LINEST. What 
is the value of sy from LINEST?



Section 4-8
Calibration Curves



Calibration Curves

A calibration curve shows the response of an 
analytical method to known quantities of 
analyte.

• Standard solutions contain known 
concentrations of analyte.

• Blank solutions contain all reagents and 
solvents used in the analysis, but contain 
no deliberately added analyte.

A spectrophotometer measures the absorbance 
of light (y-axis), which is proportional to the 
quantity of protein analyzed (x-axis).

Figure 4-12



Table 4-8 Spectrophotometer data used to 
construct calibration curve

Amount of 
protein 
(μg)

Absorbance of
independent standards Range Corrected absorbance

0 0.099 0.099 0.100 0.001 −0.0003 −0.0003 0.0007

5.0 0.185 0.187 0.188 0.003 0.0857 0.0877 0.0887

10.0 0.282 0.272 0.272 0.010 0.1827 0.1727 0.1727

15.0 0.345 0.347 (0.392) 0.047 0.2457 0.2477 —
20.0 0.425 0.425 0.430 0.005 0.3257 0.3257 0.3307

25.0 0.483 0.488 0.496 0.013 0.3837 0.3887 0.3967



Constructing a Calibration Curve (1 of 2)

1. Prepare known samples of analyte covering the 
range (0 to 150%) of concentrations expected for 
unknowns.  

• Tabulate amount of analyte in each 
standard and response.

2. Subtract the average absorbance of the blank 
solutions from each measured absorbance 
(corrected absorbance).  

• Blanks measure the response of the 
procedure when no analyte is present.

3. Make a graph of corrected absorbance vs. quantity 
of analyte.  

• Inspect the graph for linearity, outliers, and 
consistent y-uncertainty.

Figure 4-12



Constructing a Calibration Curve (2 of 2)

4. Use the least-squares procedure to find the best 
straight line through the linear portion of the 
data.

( )0 7 Corrected absorbance 0.016 3 (μg protein ) 0.004
y x

= + 

5. If you analyze an unknown at a future time, run a 
blank at that time.

• Subtract the new blank signal from the 
unknown to correct.

Figure 4-12



Example: Using a Linear Calibration Curve (1 of 3)

An unknown protein sample gave an absorbance of 0.406, and a 
blank had an absorbance of 0.104. How many micrograms of 
protein are in the unknown?

( )0 7 Corrected absorbance 0.016 3 (μg protein ) 0.004
y x

= + 



Example: Using a Linear Calibration Curve (2 of 3)

Solution: The corrected absorbance is 
0.406 − 0.104 = 0.302, which lies on the 
linear portion of the calibration curve in 
Figure 4-13. Rearranging Equation 4-25 
gives:

7

0

 corrected absorbance 0.004μg of protein
0.016 3

−
=

7
4

0

0.302 0.004 18.2 μg
0.016 3

−
= =

Figure 4-13



Example: Using a Linear Calibration Curve (3 of 3)

Test Yourself: What mass of protein gives a corrected absorbance of 
0.250?

( )0 7 Corrected absorbance 0.016 3 (μg protein ) 0.004
y x

= + 



Linear Response

The linear range of an analytical method is the 
analyte concentration range over which 
response is proportional to concentration.
Dynamic range is the concentration range over 
which there is a measurable response to 
analyte, even if the response is not linear.

• Calibration procedures with a linear response are 
preferred.

• Corrected analytical signal ∝ quantity of analyte.
• It is possible to obtain valid results beyond the 

linear region by fitting with a nonlinear equation.

Figure 4-14



Box 4-2 Using a Nonlinear Calibration Curve

• Consider an unknown whose corrected 
absorbance of 0.375 lies beyond the linear 
range.

• Fit all the data points with a quadratic 
equation: 

y = −1.17 × 10−4 x2 + 0.0185 58x − 0.000 7

• Insert y = 0.375 into the equation and 
rearrange to the form

ax2 + bx + c = 0
• Solve for x. 

8

2 4 135μg o 23. μgr
2

b b acx
a

− ± −
= =

Figure 4-13



Good Practice (1 of 2)

Always make a graph of your data
Figure 4-15

• Helps reject bad data, stimulus to repeat a measurement, or decision that a 
straight line is not appropriate

• All three data sets were fit to y = 0.5x + 3



Good Practice (2 of 2)

• It is not reliable to extrapolate any calibration curve beyond the 
measured range of standards.

• At least six calibration concentrations and two replicate 
measurements of each unknown are recommended.

• Make each standard solution from a certified material.
• Avoid serial dilution of a single stock solution (serial dilution 

propagates systematic error).
• Measure calibration solutions in random order, not in 

consecutive order of increasing concentration.



Box 4-3 Importance of Graphs to Visualize Data

A good graph reveals key characteristics of data and guides statistical 
analysis.

• Heights on the bar graph (a) give the mean values of two data sets.  
The error bars correspond to ±standard deviation of the mean.

• Data plots (b–e) show different characteristics of the data that are 
not evident in the bar graph.



Propagation of Uncertainty with a Calibration Curve

• An unknown with a corrected absorbance of y = 0.302 had a protein 
content of x = 18.24 μg. What is the uncertainty in x?

• Standard uncertainty in x = standard deviation of the mean =

( )

2

22

1 1 ( )
| |

y
x

i

s y yu
m k n m x x

−
= + +

−∑
30.2 μgxu = ±

k = number of replicate measurements
n = number of data points 

• Confidence interval for x is ±tux, where t is Student’s t for n − 2 degrees of 
freedom

±tux = ±(2.179)(0.23) = ± 0.50 μg



Section 4-9
A Spreadsheet for Least Squares



Figure 4-16: Spreadsheet for Linear Least-
Squares Analysis



Figure 4-17: Adding Error Bars to a Graph
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